K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3: 

Xét ΔAMN và ΔABC có

AM/AB=AN/AC

\(\widehat{A}\) chung

DO đó:  ΔAMN\(\sim\)ΔABC

13 tháng 4 2018

3.c2,52,5

24 tháng 2 2022

Nguyễn Ngọc Huy Toàn đâu ra giúp kìa :V

24 tháng 2 2022

=^= gọi em í làm gì tròi, giúp thì giúp luôn đi :v

24 tháng 2 2022

e làm a,b chung luôn nha chị

Xét tam giác ABC và tam giác A`B`C`, có:

\(\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( gt )

Góc A = góc A` = 90 độ

=> tam giác ABC đồng dạng tam giác A`B`C`

=>\(\dfrac{AC}{A`C`}=\dfrac{AB}{A`B`}=\dfrac{BC}{B`C`}=2\) ( tính chất 2 tam giác đồng dạng )

24 tháng 2 2022

=^= um dù sao cũm cảm ơn nhó:33

19 tháng 8 2017

ΔA'B'C' Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔA''B''C'' theo tỉ số đồng dạng k1 ⇒ Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

ΔA''B''C'' Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC theo tỉ số đồng dạng k2 ⇒ Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Mà ΔA'B'C' Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔA''B''C''; ΔA''B''C'' Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC

⇒ ΔA'B'C' Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8 ΔABC (theo tính chất 3)

Tỉ số đồng dạng:

Giải bài 24 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy tam giác A'B'C' đồng dạng với tam giác ABC theo tỉ số k1.k2.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Giả sử $AB=3, AC=4, BC=5$ (cm)

Vì $3^2+4^2=5^2$ nên theo định lý Pitago đảo thì $ABC$ là tam giác vuông tại $A$

$A'B'C'$ đồng dạng với $ABC$ nên $A'B'C'$ là tam giác vuông tại $A'$

$\Rightarrow S_{A'B'C'}=\frac{A'B'.A'C'}{2}=54\Rightarrow A'B'.A'C'=108(*)$ (cm)

$ABC\sim A'B'C'\Rightarrow \frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}$

$\Leftrightarrow \frac{A'B'}{3}=\frac{B'C'}{5}=\frac{C'A'}{4}(**)$

Từ $(*); (**)$ suy ra $A'B'=9; B'C'=15; C'A'=12$ (cm)

13 tháng 4 2019

Đáp án: A

Sai số tuyệt đối là:  Δa = |a| . δa = 2,1739. 1% = 0,021739.

22 tháng 11 2023

Bài 2:

loading...

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC

c: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là phân giác của \(\widehat{BAC}\)

Bài 1:

a: XétΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

\(\widehat{ABE}=\widehat{DBE}\)

Do đó: ΔBAE=ΔBDE

b: ΔBAE=ΔBDE

=>EA=ED

Xét ΔEAF vuông tại A và ΔEDC vuông tại D có

EA=ED

\(\widehat{AEF}=\widehat{DEC}\)

Do đó: ΔEAF=ΔEDC

=>EF=EC

loading...

chịu thua