giải hệ
\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)
TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)
Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)
TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)
2 câu dưới hình như em hỏi rồi?
\(xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\)
\(\Leftrightarrow xy\left[\left(x+y\right)^2-2xy\right]+2-\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left[\left(xy\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-\left(xy-1\right)\left(2xy+2\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2xy-2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1\\x^2+y^2=2\end{matrix}\right.\)
- Với \(xy=1\)
\(xy\left(5x-4y\right)+3y^3-2x-2y=0\)
\(\Leftrightarrow3y^3+3x-6y=0\)
\(\Leftrightarrow3y^3+\frac{3}{y}-6y=0\)
\(\Leftrightarrow3y^4-6y^2+3=0\Leftrightarrow3\left(y^2-1\right)^2=0\Leftrightarrow...\)
- Với \(x^2+y^2=2\)
\(\Rightarrow2x^2y-4xy^2+3y\left(x^2+y^2\right)-2x-2y=0\)
\(\Leftrightarrow2x^2y-4xy^2-2x+4y=0\)
\(\Leftrightarrow2x\left(xy-1\right)-4y\left(xy-1\right)=0\)
\(\Leftrightarrow2\left(x-2y\right)\left(xy-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\xy=1\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
Viết lại (2)
\(xy\left(x^2+y^2\right)+2-\left(x+y\right)^2=0\)
\(\Leftrightarrow xy\left(x+y\right)^2-2x^2y^2+2-\left(x+y\right)^2=0\)
\(\Leftrightarrow\left(x+y\right)^2\left(xy-1\right)-2\left(x^2y^2-1\right)=0\)
\(\Leftrightarrow\left(xy-1\right)\left[\left(x+y\right)^2-2\left(xy+1\right)\right]=0\)
\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)
- TH1: \(xy=1\)
\(\left(1\right)\Rightarrow5x-4y+3y^3-2\left(x+y\right)=0\)
\(\Leftrightarrow3x-6y+3y^3=0\)
\(\Leftrightarrow\dfrac{3}{y}-6y+3y^3=0\)
Đến đây dễ rồi nhé.
- TH2: \(x^2+y^2=2\)
\(\left(1\right)\Rightarrow5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow-x^3+2y^3+4x^2y-5xy^2=0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x-2y\right)=0\)
Đến đây dễ rồi nhé.