K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

\(\sqrt{4\sqrt{2}-\sqrt{4+16\sqrt{6-4\sqrt{2}}}}+\sqrt{\sqrt{3}+\sqrt{228+50\sqrt{67-16\sqrt{3}}}}\)

\(=\sqrt{4\sqrt{2}-\sqrt{4+16\sqrt{\left(\sqrt{2}-2\right)^2}}}+\sqrt{\sqrt{3}+\sqrt{228+50\sqrt{\left(\sqrt{3}-8\right)^2}}}\)

\(=\sqrt{4\sqrt{2}-\sqrt{4+16\left(2-\sqrt{2}\right)}}+\sqrt{\sqrt{3}+\sqrt{228+50\left(8-\sqrt{3}\right)}}\)

\(=\sqrt{4\sqrt{2}-\sqrt{36-16\sqrt{2}}}+\sqrt{\sqrt{3}+\sqrt{628-50\sqrt{3}}}\)

\(=\sqrt{4\sqrt{2}-\sqrt{\left(4\sqrt{2}-2\right)^2}}+\sqrt{\sqrt{3}+\sqrt{\left(\sqrt{3}-25\right)^2}}\)

\(=\sqrt{4\sqrt{2}-4\sqrt{2}+2}+\sqrt{\sqrt{3}+25-\sqrt{3}}\)

\(=\sqrt{2}+5\)

6 tháng 9 2021

\(\sqrt{4\sqrt{2}-\sqrt{4+16\sqrt{6-4\sqrt{2}}}}+\sqrt{\sqrt{3}+\sqrt{228+50\sqrt{67-16\sqrt{3}}}}=\sqrt{4\sqrt{2}-\sqrt{4+16\sqrt{\left(2-\sqrt{2}\right)^2}}}+\sqrt{\sqrt{3}+\sqrt{228+50\sqrt{\left(8-\sqrt{3}\right)^2}}}=\sqrt{4\sqrt{2}-\sqrt{4+32-16\sqrt{2}}}+\sqrt{\sqrt{3}+\sqrt{228+400-50\sqrt{3}}}=\sqrt{4\sqrt{2}-\sqrt{36-16\sqrt{2}}}+\sqrt{\sqrt{3}+\sqrt{628-50\sqrt{3}}}=\sqrt{4\sqrt{2}-4\sqrt{2}+2}+\sqrt{\sqrt{3}+25-\sqrt{3}}=\sqrt{2}+\sqrt{25}=5+\sqrt{2}\)

24 tháng 6 2021

`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`

`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`

`=root{3}{4(1-sqrt3)(1+sqrt3)}`

`=root{3}{4(1-3)}=-2`

`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`

`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`

`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`

`=root{3}{9}`

24 tháng 6 2021

`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`

`=root{3}{(8sqrt5-16)(8sqrt5+16)}`

`=root{3}{320-256}`

`=root{3}{64}=4`

`b)root{3}{7-5sqrt2}-root{6}{8}`

`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`

`=root{3}{(1-sqrt2)^3}-sqrt2`

`=1-sqrt2-sqrt2=1-2sqrt2`

 

2 tháng 11 2023

a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)

\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)

\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)

\(=-8\sqrt{2}\) 

b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=3-\sqrt{3}+\sqrt{3}-2\)

\(=1\)

c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)

\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{x^2-8x+16}\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\) 

e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)

\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)

\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)

\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)

\(=-a^2\)

1) \(\sqrt{1\dfrac{9}{16}}=\sqrt{\dfrac{25}{16}}=\dfrac{5}{4}\)

2) \(\dfrac{\sqrt{12.5}}{0.5}=\sqrt{\dfrac{12.5}{0.25}}=5\sqrt{2}\)

3) \(\sqrt{\dfrac{25}{64}}=\dfrac{5}{8}\)

4) \(\dfrac{\sqrt{230}}{\sqrt{2.3}}=\sqrt{\dfrac{230}{2.3}}=\sqrt{100}=10\)

5) \(\left(\sqrt{\dfrac{2}{3}}+\sqrt{\dfrac{50}{3}}-\sqrt{24}\right)\cdot\sqrt{6}\)

\(=\left(\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{5\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)

\(=\left(\dfrac{6\sqrt{2}}{\sqrt{3}}-2\sqrt{6}\right)\cdot\sqrt{6}\)

\(=0\cdot\sqrt{6}=0\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

1.

\(\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{15}-3}=\frac{3\sqrt{5}-\sqrt{5}.\sqrt{15}}{\sqrt{15}-3}=\frac{-\sqrt{5}(\sqrt{15}-3)}{\sqrt{15}-3}=-\sqrt{5}\)

2.

\(\frac{\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{2+2\sqrt{2.3}+3}}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{(\sqrt{2}+\sqrt{3})^2}}{\sqrt{2}+\sqrt{3}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}}=1\)

3.

\(\frac{7+4\sqrt{3}}{2+\sqrt{3}}=\frac{2^2+2.2\sqrt{3}+3}{2+\sqrt{3}}=\frac{(2+\sqrt{3})^2}{2+\sqrt{3}}=2+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

4.

\(\frac{16-6\sqrt{7}}{\sqrt{7}-3}=\frac{3^2-2.3\sqrt{7}+7}{\sqrt{7}-3}=\frac{(\sqrt{7}-3)^2}{\sqrt{7}-3}=\sqrt{7}-3\)

5.

\(\frac{(\sqrt{3}-\sqrt{2})^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{3+2+2\sqrt{2.3}}{\sqrt{3}+\sqrt{2}}=\frac{(\sqrt{3}+\sqrt{2})^2}{\sqrt{3}+\sqrt{2}}=\sqrt{3}+\sqrt{2}\)

6.

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{6-2\sqrt{10}}}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{6-2\sqrt{10}}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

2 tháng 9 2017

b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)

= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)

= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)

= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)

\(\)\(-2,449\)

2 tháng 9 2017

\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)

= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)

= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

\(2,098\)

1 tháng 9 2023

1) \(\sqrt[]{9\left(x-1\right)}=21\)

\(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)

2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)

\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)

\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)

mà \(\sqrt[]{1-x}\ge0\)

\(\Leftrightarrow pt.vô.nghiệm\)

3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)

\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)

\(\Leftrightarrow2x=50\Leftrightarrow x=25\)

1 tháng 9 2023

1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))

\(\Leftrightarrow3\sqrt{x-1}=21\)

\(\Leftrightarrow\sqrt{x-1}=7\)

\(\Leftrightarrow x-1=49\)

\(\Leftrightarrow x=49+1\)

\(\Leftrightarrow x=50\left(tm\right)\)

2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý) 

Phương trình vô nghiệm

3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)

\(\Leftrightarrow2x=50\)

\(\Leftrightarrow x=\dfrac{50}{2}\)

\(\Leftrightarrow x=25\left(tm\right)\)

4) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)

\(\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)

5) \(\sqrt{\left(x-3\right)^2}=3-x\)

\(\Leftrightarrow\left|x-3\right|=3-x\)

\(\Leftrightarrow x-3=3-x\)

\(\Leftrightarrow x+x=3+3\)

\(\Leftrightarrow x=\dfrac{6}{2}\)

\(\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

a.

\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)

b.

\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)

c.

\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

d.

\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)

e.

Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)

Khi đó:

$a^3+b^3=4$

$ab=\frac{2}{3}$

$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$

$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$

$(E-2)(E^2+2E+2)=0$

Dễ thấy $E^2+2E+2>0$ nên $E-2=0$

$\Leftrightarrow E=2$