K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

M=(x − y+1/2 )^2 + 3/4.(y + 1/3 )^2 + 2/3 ≥ 2/3

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

3 tháng 5 2017

ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)

\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)

\(\Leftrightarrow xy\le1\)

\(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)

\(\Leftrightarrow0\le x+y\le2\).

\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

Áp dụng bất đẳng thức cauchy dạng phân thức:

\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)

\(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))

\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))

Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)

từ (*) và (**) ta có \(VT\ge1+1=2\)

đẳng thức xảy ra khi x=y=1

3 tháng 5 2017

hay qé tks nhìu

15 tháng 8 2017

a,P=\(x^2-xy+y^2\)

=\(\left(x-y\right)^2\)

\(\left(x-y\right)^2\ge0\)vs mọi x

Vậy Min của P =0

b,P= \(x^2+xy+y^2\)

=\(\left(x+y\right)^2\)

\(\left(x+y\right)^2\ge0\)vs mọi x

Vậy Min của P=0

15 tháng 12 2018

\(M=\dfrac{1}{x^{2}+y^{2}}+\dfrac{1}{xy} \\=(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy})+\dfrac{1}{2xy}\\ \)

\(\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2.\left(\dfrac{x+y}{2}\right)^2}=\dfrac{4}{1^2}+\dfrac{1}{2.\left(\dfrac{1}{2}\right)^2}=6\)

Dấu "=" xảy ra<=>x=y=0,5.

NV
15 tháng 12 2018

\(M=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=6\)

\(\Rightarrow M_{min}=6\) khi \(x=y=\dfrac{1}{2}\)

NV
27 tháng 4 2020

\(A=\frac{\sqrt{z\left(x+y+z\right)+xy}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\frac{\sqrt{z^2+xy+yz+zx}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(A=\frac{\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\ge\frac{\sqrt{\left(z+\sqrt{xy}\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}\)

\(A\ge\frac{z+\sqrt{xy}+x+y}{1+\sqrt{xy}}=\frac{1+\sqrt{xy}}{1+\sqrt{xy}}=1\)

\(A_{min}=1\) khi \(x=y\)