K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

Ta có : \(1=\frac{\sqrt{x}+3}{\sqrt{x}+3}\)mà \(\sqrt{x}+5>\sqrt{x}+3\)

Vậy P > 1 

6 tháng 9 2021

ĐK : x >= 0

Xét hiệu P - 1 ta có : \(P-1=\frac{\sqrt{x}+5}{\sqrt{x}+3}-1=\frac{\sqrt{x}+5-\sqrt{x}-3}{\sqrt{x}+3}=\frac{2}{\sqrt{x}+3}>0\forall x\ge0\)

=> P - 1 > 0 <=> P > 1

5 tháng 6 2015

Mau la \(\sqrt{X - 3} \) that sao

5 tháng 5 2019

sử dụng phương pháp miền giá trị

5 tháng 5 2019

bạn nói rõ hơn được không?

10 tháng 8 2020

a) \(ĐKXĐ:\) \(x\ne1,x>0\)

\(P=1:\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\right)\)

\(=1:\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\)

\(=1:\left[\frac{x+2+x-1-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\)

\(=1:\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Vậy \(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\left(x\ne1,x>0\right)\)

b) Xét hiệu \(P-3=\frac{x+\sqrt{x}+1}{\sqrt{x}}-3\)

\(=\frac{x+\sqrt{x}+1-3\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\) \(\forall x>0,x\ne1\)

Do đó : \(P>3\)

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(B=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

b. Ta có \(B-5=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}-5=\frac{2x-3\sqrt{x}+2}{\sqrt{x}}=\frac{2\left(x-2.\sqrt{x}.\frac{3}{4}+\frac{9}{16}\right)-\frac{9}{8}+2}{\sqrt{x}}\)

\(=\frac{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}{\sqrt{x}}\)

Ta thấy \(\hept{\begin{cases}2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}>0\\\sqrt{x}>0\forall x>0\end{cases}\Rightarrow B-5>0\Rightarrow B>5}\)

Vậy \(B>5\)

13 tháng 9 2019

\(C=\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

\(=\sqrt{x}-1\)

Ta co:

\(\sqrt{x}-1+\frac{2}{\sqrt{x}}=\frac{x-\sqrt{x}+2}{\sqrt{x}}=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}{\sqrt{x}}>0\)

\(\Rightarrow\sqrt{x}-1>-\frac{2}{\sqrt{x}}\)