Cho ΔABC có \(\widehat{A}=90^o\) và \(\widehat{B}=60^o.\) Trên cạnh BC lấy điểm D và E sao cho BD = BA, CE = CA.
a) Chứng minh: ΔABD đều, ΔADC cân
b) Tính góc EAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAD có BA=BD và góc B=60 độ
nên ΔBAD đều
b: góc CAD=90-60=30 độ=góc C
=>ΔDAC cân tại D
a) Ta có:
\(BA=BD\rightarrow\Delta BAD\)cân tại \(B\)mà \(\widehat{ABD}=\widehat{B}=60^o\)
b) Ta có: \(\Delta BAD\)đều
\(\rightarrow\widehat{BAD}=60^o\)
\(\rightarrow=\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=30^o\)
Lại có: \(\Delta ABC\)vuông tại \(A\rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
\(\rightarrow\widehat{DAC}=\widehat{ACB}=\widehat{ACD}\)
\(\rightarrow\Delta ADC\)cân tại \(D\)
c) Ta có: \(CA=CE\rightarrow\Delta CAE\)cân tại \(C\)
\(\rightarrow\widehat{EAC}=90^o-\frac{1}{2}\widehat{ACB}=90^o-\frac{1}{2}\widehat{ACB=75^o}\)
\(\rightarrow\widehat{DAE}=\widehat{CAE}-\widehat{CAD}=45^o\)
đccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a, xét tam giác ABD và tam giác ACD có : AD chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAD = góc CAD do AD là phân giác của góc BAC (gt)
=> tam giác ABD = tam giác ACD (c-g-c)
b, tam giác ABD = tam giác ACD (câu a)
=> BD = DC (đn) mà D nằm giữa B; C
=> D là trung điểm của BC (đn)
=> AD là trung tuyến
CF là trung tuyến
CF cắt AD tại G
=> G là trong tâm của tam giác ABC (đl)
c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\)tam giác EDC cân tại E
D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)
Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC
\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà \(\widehat{B}=60^0\)
nên ΔBAD đều
Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>AB/BC=1/2
=>AB=1/2BC
=>AD=BD=1/2BC
=>D là trung điểm của BC
=>DA=DC
hay ΔDAC cân tại D
b: \(\widehat{BAE}+\widehat{CAE}=90^0\)
nên \(\widehat{BAE}+75^0=90^0\)
=>\(\widehat{BAE}=15^0\)
=>\(\widehat{EAD}=45^0\)