5x(5x+1)(5x+2)<518
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : M\(^2\)= (\(\dfrac{5x-4y}{5x+4y}\))\(^2\) = \(\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)= \(\dfrac{25x^2+16y^2-40xy}{25x^2+16y^2+40xy}\)
= \(\dfrac{41xy-40xy}{41xy+40xy}=\dfrac{xy}{81xy}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
Mà 4y < 5x < 0 \(\Rightarrow\)5x - 4y > 0 . 5x +4y < 0 \(\Rightarrow\) M < 0
Vậy M = - \(\dfrac{1}{9}\)
5x2 - 3x > 0
=> x.(5x - 3) > 0
=> x và 5x - 3 cùng dấu
Xét 2 trường hợp:
- TH1: \(\hept{\begin{cases}x< 0\\5x-3< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 0\\5x< 3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 0\\x< \frac{3}{5}\end{cases}}\)\(\Rightarrow x< 0\)
- TH2: \(\hept{\begin{cases}x>0\\5x-3>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>0\\5x>3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>0\\x>\frac{3}{5}\end{cases}}\)\(\Rightarrow x>\frac{3}{5}\)
Vậy \(\orbr{\begin{cases}x< 0\\x>\frac{3}{5}\end{cases}}\)thỏa mãn đề bài
\(\frac{3x-8}{5x-1}< 0\)=> 3x - 8 và 5x - 1 là 2 số trái dấu
Xét 2 trường hợp:
- TH1: \(\hept{\begin{cases}3x-8< 0\\5x-1>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x< 8\\5x>1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< \frac{8}{3}\\x>\frac{1}{5}\end{cases}}\)\(\Rightarrow\frac{1}{5}< x< \frac{8}{3}\)
- TH2" \(\hept{\begin{cases}3x-8>0\\5x-1< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x>8\\5x< 1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{8}{3}\\x< \frac{1}{5}\end{cases}}\), vô lý
Vậy \(\frac{1}{5}< x< \frac{8}{3}\)thỏa mãn đề bài
a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)
<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)
Vậy...
a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)
b) \(\left(5x+3\right)\left(3x-2\right)< 0\)
\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)
\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)
\(x^2-5x+6\ge0\)
\(x^2-2x-3x+6\ge0\)
\(x\left(x-2\right)-3\left(x-2\right)\ge0\)
\(\left(x-3\right)\left(x-2\right)\ge0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-3\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3\le0\\x-2\le0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x\ge3\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x\le2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
vậy tập nghiệm của phương trình là \(\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)
\(x^2-6x+8< 8\)
\(x^2-4x-2x+8< 0\)
\(x\left(x-4\right)-2\left(x-4\right)< 0\)
\(\left(x-2\right)\left(x-4\right)< 0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-2>0\\x-4< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x-4>0\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x>2\\x< 4\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2< x< 4\\\varnothing\end{cases}}\)
vậy \(2< x< 4\) hay \(x=3\)
\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)
\(\frac{\left(x-1\right).2}{6}-\frac{\left(2x+1\right).3}{6}< \frac{5x+1}{6}-\frac{6x}{6}\)
\(2x-2-6x-3< 5x+1-6x\)
\(-3x< 6\)
\(x>-2\)
vậy tập nghiệm của bất phương trình là \(x>-2\)
tích 3 số tự nhiên liên tiếp < (5^6)^3
=> x<6