Cho các số nguyên a1;a2;...an không chia hết cho SNT p. Chứng minh rằng:
\(A=p_1a_1^{\left(p-1\right)k_1}+p_2a_2^{\left(p-2\right)k_2}+..+P_na_n^{\left(p-n\right)k_n}\)chia hết cho p khi và chỉ khi \(\left(p_1+p_2+...+p_n\right)\) chia hết cho p
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chon dai di thoi
a1=1
a2=3
=>d3=2
d1=a1-a3 de sai roi a1<a3 khong co d1
Ta có a1 +a2+...+a20 <0
Lại có a2+a3+a4 >0;
a5 +a6+a7 >0;
a8+a9+a10>0;
a11+a12+a13>0;
a15+a16+a17>0;
a18 +a19+a20>0;
a1>0
=> a14<0;
Lại có a1+a2+a3 >0;
a4+a5+a6>0;
....
a10+a11+a12>0;
a15+a16+a17>0;
a18+a19+a20>0;
=> a13+a14<0;
mà a12+a13+a14>0;
=>a12>0;
=> a1.a12>0;
a1.a14+a14.a12<0;
=>a1.a14+a14.a12<a1.a12
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Bài 1:
#include <bits/stdc++.h>
using namespace std;
long long n,x,i,t1,t2;
int main()
{
cin>>n;
t1=0; t2=0;
for (i=1; i<=n; i++)
{
cin>>x;
if (x%2==0) t1=t1+x;
else t2=t2+x;
}
cout<<t1<<" "<<t2;
return 0;
}
tick để ủng hộ mình nha
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì **** cho mình nhé)
\
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
tick nha
Lời giải:
Theo đề bài ta có \((a_i,p)=1\) với \(i=\overline{1,n}\)
Do đó áp dụng định lý Fermat nhỏ ta có:
\(a_i^{p-1}\equiv 1\pmod p\)
\(\Leftrightarrow a_i^{(p-1)k_i}\equiv 1^{k_i}\equiv 1\pmod p\)
Suy ra:
\(A=p_1a_1^{(p-1)k_1}+p_2a_2^{(p-1)k_2}+...+p_na_n^{(p-1)k_n}\equiv p_1+p_2+...+p_n\pmod p\)
Do đó:
\(A\vdots \Rightarrow p_1+p_2+...+p_n\vdots p\)
\(p_1+p_2+....+p_n\vdots p\Rightarrow A\vdots p\)
Điều này tương đương với: \(A\vdots p\Leftrightarrow \sum p_i\vdots p\)
Ta có đpcm.