cho \(A=\dfrac{x^3-3x^2+0,25xy^2-4}{x^2+y}\) tính A biết \(x=\dfrac{1}{2}\) ; y là số nguyên âm lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{x^3-3x^2+0,25xy^2-4}{x^2+y} \)
Tính A biết \(x=\dfrac{1}{2}\); y là số nguyên âm lớn nhất
Vì ý là số nguyên âm lớn nhất
=> y = -1
Thay \(x=\frac{1}{2};y=-1\) vào A là ta có:
\(A=\frac{\left(\frac{1}{2}\right)^3-3.\left(\frac{1}{2}\right)^2+0,25.\frac{1}{2}.\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)
\(=\) \(\frac{\frac{1}{8}-3.\frac{1}{4}+0,25.\frac{1}{2}.1-4}{\frac{1}{4}+\left(-1\right)}\)
\(=\frac{\frac{1}{8}-\frac{3}{4}+\frac{1}{8}-4}{\frac{5}{4}}\)
\(=\frac{\frac{-9}{2}}{\frac{5}{4}}=\frac{-9}{2}.\frac{4}{5}=\frac{-36}{10}=\frac{-18}{5}=-3,6\)
Vậy \(A=-3,6\)
\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
Bài 1:
b) ĐKXĐ: \(x\ne3\)
Ta có: \(\dfrac{3-x}{20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\dfrac{x-3}{-20}=\dfrac{-5}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=100\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\left(nhận\right)\\x=-7\left(nhận\right)\end{matrix}\right.\)
Vậy: \(x\in\left\{13;-7\right\}\)
\(a,ĐK:x\ne\pm2\\ A=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\\ ĐK:x\ne-1;x\ne-2\\ B=\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ b,x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \forall x=0\Leftrightarrow A=\dfrac{1}{0-2}=-\dfrac{1}{2}\\ \forall x=-1\Leftrightarrow A=\dfrac{1}{-1-2}=-\dfrac{1}{3}\)
\(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ \Leftrightarrow B=\dfrac{1}{0+2}=\dfrac{1}{2}\)
y là số nguyên âm lớn nhất nên y = -1
Thay \(x=\dfrac{1}{2},y=-1\)vào A ta được
A=\(\dfrac{\left(\dfrac{1}{2}\right)^3-3.\left(\dfrac{1}{2}\right)^2+0,25.\dfrac{1}{2}.\left(-1\right)^2-4}{\left(\dfrac{1}{2}\right)^2+\left(-1\right)}=6\)