Cho tam giác ABC,có các đường cao AD,BE,CF cắt nhau tại H. 1.Chứng minh: 4 điểm B,C,E,F cùng thuộc 1 đường tròn.Tìm tâm của đường tròn đó 2.Chứng minh: 4 điểm AE,HF cùng thuộc 1 đường tròn Mn giúp em vs ạ
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
9 tháng 9 2021
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp
1.Vì BE là đường cao
⇒∠BEC=∠AEB=90o
Tương tự: ∠BFC=∠AFC=90o
Xét tứ giác BFEC có ∠BFC và ∠BEC cùng nhìn BC dưới góc bằng 90o
⇒ BFEC là tứ giác nội tiếp
⇒ 4 điểm B,F,E,C cùng thuộc 1 đường tròn có tâm là trung điểm của BC
2.Xét tứ giác AFHE có ∠AFH + ∠AEH = 90o + 90o =180o
⇒ AFHE là tứ giác nội tiếp
⇒ 4 điểm A,F,H,E cùng thuộc 1 đường tròn có tâm là trung điểm của AH