cho tam giać ABC vuông góc tại A biết AB=6cm,AC=8cm có đường trung tuyến AM qua M lần lượt kẻ các đường thẳng vuông góc với AB và AC taị E và F a)tính BM,AM b) chứng minh rằng tứ giác AEMF là hình chữ nhật c) D là điểm đối xứng của M qua F chứng minh tứ giác MCDA là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
CH=8^2/10=6,4cm
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK
a . i ) Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow CM\perp OM,CA\perp OA\Rightarrow CMOA\) nội tiếp đường tròn đường kính CO
Tương tự : = > DMOB nội tiếp
ii ) Vì CM,CA là tiếp tuyến của (O) \(\Rightarrow OC\) là phân giác của \(\widehat{AOM}\)
Tương tự OD là phân giác \(\widehat{BOM}\)
Mà \(\widehat{AOM}+\widehat{MOB}=180^0\Rightarrow OC\perp OD\)
Ta có : CMOA , OBDM nội tiếp
\(\Rightarrow\widehat{AOC}=\widehat{AMC}=\widehat{ABM}=\widehat{OBM}=\widehat{ODM}\) vì CM là tiếp tuyến của (O)
b ) Ta có : \(\widehat{MAB}=60^0\Rightarrow\widehat{DMB}=\widehat{MAB}=60^0\) vì DM là tiếp tuyến của (O)
Mà \(DM=DB\Rightarrow\Delta DMB\) đều
Lại có : \(\widehat{MOB}=2\widehat{MAB}=120^0\)
\(\Rightarrow\frac{S_{MB}}{S_O}=\frac{120^0}{360^0}=\frac{1}{3}\)
\(\Rightarrow S_{MB}=\frac{1}{3}S_O=\frac{1}{3}.\pi.R^2\)
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
a) Xét \(\Delta ABC\) có :
- Theo giả thuyết \(\Delta ABC\) vuông tại A
=> \(BC^2=AB^2+AC^2\) (Định lí PITAGO)
=> \(BC^2=6^2+8^2\)
=> \(BC^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Mà có : Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
=> \(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
Có thêm : \(BM=\dfrac{1}{2}BC\left(gt\right)\)
\(\Rightarrow BM=AM=5\left(cm\right)\)
b) Xét tứ giác \(AEMF\) có :
\(\widehat{MEA}=90^o\left(ME\perp AB-gt\right)\)
\(\widehat{MFA}=90^o\left(MF\perp AC-gt\right)\)
\(\widehat{EAM}=90^o\left(\Delta ABC\perp A-gt\right)\)
=>Tứ giác \(AEMF\) là hình chữ nhật
c) Xét tứ giác \(MCDA\) có :
\(MF=FD\left(gt\right)\)
\(AF=FC\)
=> Tứ giác MCDA là hình bình hành
Mặt khác : \(MF\perp AC\left(gt\right)\)
=> Tứ giác MCDA là hình thoi. (đpcm)