Tìm GTNN của biểu thức:
M=x^ 2+y^ 2-2x+6y+28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:= \(2x\left(x-3\right)-6\left(x-3\right)+2y\left(x-3\right)\)
=\(2\left(x-3\right)\left(x+y-3\right)\)
bài 2:P=\(x^2-2x+1+y^2+6y+9+2\)
P=\(\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
vậy Pmin=2 khi x=1 và y=-3
Ta có : A = x2 + 2x + y2 + 6y + 10
=> A = (x2 + 2x + 1) + (y2 + 6y + 9)
=> A = (x + 1)2 + (y + 3)2
Mà : (x + 1)2 và (y + 3)2 \(\ge0\forall x,y\)
Nên : A = (x + 1)2 + (y + 3)2 \(\ge0\forall x,y\)
Vậy Amin = 0 tại x = -1 và y = -3
\(A=x^2+2x+y^2+6y+10\)
\(=x^2+2x+y^2+6y+1+9\)
\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)
\(=\left(x+1\right)^2+\left(y+3\right)^2\)
vì \(\left(x+1\right)^2\ge0\forall x;\left(y+3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\forall x\)
vậy \(MinA=0\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-3\end{cases}}\)
A= \(x^2+2x+1+y^2+6y+9\) \(=\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
dau "=" xay ra \(\Leftrightarrow x=-1,y=-3\)
min A= 0 khi x=-1,y=-3
Ta có : 2x2 - 6x
= \(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)
Q\(=\left(\sqrt{2}x-6\right)^2-36\)
Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)
Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)
Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)
ta có \(A=x^2+y^2+9-2xy-6x+6y+x^2-4x+4+2004\)
\(=\left(x-y-3\right)^2+\left(x-2\right)^2+2004\)
vì \(\left(x-y-3\right)^2+\left(x-2\right)^2\ge0\)
=> \(A\ge2004\)
dấu = xảy ra <=> x=2 và y=-1
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
\(M=x^2+y^2-2x+6y+28=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+18=\left(x-1\right)^2+\left(y+3\right)^2+18\ge18\)
\(minM=18\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)