K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
5 tháng 9 2021

ta có :

\(K=a^2\left(b+c\right)+a\left(b^2+c^2+2bc\right)+bc\left(b+c\right)=a^2\left(b+c\right)+a\left(b+c\right)^2+bc\left(b+c\right)\)

\(=\left(b+c\right)\left(a^2+a\left(b+c\right)+bc\right)=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

tương tự L và M có dạng giống hệt K nên ta có 

\(\hept{\begin{cases}L=\left(x+y\right)\left(x+z\right)\left(y+z\right)\\M=\left(a+b\right)\left(a+c\right)\left(b+c\right)\end{cases}}\)

25 tháng 9 2020

a,\(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-2b\right)\)

\(=\left(a-b\right)2\left(a-b\right)\)

\(=2\left(a-b\right)^2\)

b,\(\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)-\left(y-2x\right)\)

\(=\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)+\left(2x-y\right)\)

\(=\left(2x-y\right)\left(x+y+3x-y+1\right)\)

\(=\left(2x-y\right)\left(4x+1\right)\)

25 tháng 9 2020

c,\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2y-x^2z+y^2z-y^2x+z^2\left(x-y\right)\)

\(=x^2y-y^2x-x^2z+y^2z+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)

\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

14 tháng 9 2016

x2 - x - y2 - y

= (x - y)(x + y) - (x + y)

= (x + y)(x - y - 1)

***

9x2 + y2 - 16z2 + 6xy

= (3x + y)2 - (4z)2

= (3x + y - 4z)(3x + y + 4z)

***

a3 - a2x - ay + xy

= a2(a - x) - y(a - x)

= (a - x)(a2 - y)

***

2x2 - 8y2 + 3x + 6y

= 2(x2 - 4y2) + 3(x + 2y)

= 2(x - 2y)(x + 2y) + 3(x + 2y)

= (x + 2y)(2x - 4y + 3)

***

xy(x + y) + yz(y + z) + xz(x + z) + 2xyz

= xy(x + y + z) + yz(x + y + z) + xz(x + z)

= y(x + y + z)(x + z) + xz(x + z)

= (x + z)(xy + y2 + yz + xz)

= (x + z)[y(x + y) + z(x + y)]

= (x + z)(x + y)(y + z) 

18 tháng 8 2017

chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha

18 tháng 8 2017

a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)

b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

c)\(-2\left(x-4\right)\left(2x+1\right)\)

d)\(\left(x-5\right)\left(4x+1\right)\)

e)\(3\left(x-2\right)\left(3x-2\right)\)

g)\(2\left(a-b\right)^2\)

h)\(\left(xy-3\right)\left(5y^2-2z\right)\)

i)\(\left(4x+1\right)\left(2x-y\right)\)

l)\(abc^2\left(b-a\right)\left(b+c\right)\)

m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

5 tháng 10 2021

\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)

1 tháng 11 2021

1D  2C

Câu 1: D

Câu 2: C

13 tháng 9 2020

a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)

        \(=4x\left(2y-z\right)-7y\left(2y-z\right)\)

        \(=\left(4x-7y\right)\left(2y-z\right)\)

13 tháng 9 2020

b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)

        \(=\left(2x+1\right)\left(x+3\right)\)