Cho hình chữ nhật ABCD có AB=3AD. Gọi M, N lần lượt là giao điểm của đường thẳng DM và EB
a) C/m tứ giác AEBN là hình thoi
b) Tứ giác AEID là hình gì? Vì sao?
c) Biết AB=6cm. Tính diện tích đa giác AEBCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé. mình mới nghĩ ra câu a vs c
a) Xét tứ giác AEBN có : EM=EN ( E đối xứng N qua M )
AM=MB ( M là TĐ' của AB )
=> Tg AEBN là hình bình hành ( Tg có 2 đường chéo cắt nhau tại trung điểm của mỗi đường là hbh )
mà EN vuông góc với AB ( E đối xứng N qua M )
=> hbh AEBN là hình thoi ( hbh có 2 đường chéo vuông ^ vs nhau là hình thoi )
c) Ta có AB=3BC (gt)
=> 6=3. BC=> BC=2cm
SABCD= a.b = 6.2 = 12 (cm2)
Mặt khác: AEBN là hình thoi (cmt)
=>EM=MN=2cm
SAEB = a.h:2 = 6.2:2 = 3 (cm2 )
Vậy SAEBCD= SABCD+SAEB=12+2=14 (cm2)
a) Ta có: NB = NC (gt); ND = NA (gt)
⇒ Tứ giác ABDC là hình bình hành
có ∠A = 90o (gt) ⇒ ABDC là hình chữ nhật.
b) Ta có: AI = IC (gt); NI = IE (gt)
⇒ AECN là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).
mặt khác ΔABC vuông có AN là trung tuyến nên AN = NC = BC/2.
Vậy tứ giác AECN là hình thoi.
c) BN và DM là 2 đường trung tuyến của tam giác ABD; BN và MD giao nhau tại G nên G là trọng tâm tam giác ABD.
Tương tự G’ là trọng tâm của hai tam giác ACD
⇒ BG = BN/3 và CG’ = CN/3 mà BN = CN (gt) ⇒ BG = CG’
d) Ta có: SABC = (1/2).AB.AC = (1/2).6.6 = 24 (cm2)
Lại có: BG = GG’ = CG’ (tính chất trọng tâm)
⇒ SDGB = SDGG' = SDG'C = 1/3 SBCD
(chung đường cao kẻ từ D và đáy bằng nhau)
Mà SBCD = SCBA (vì ΔBCD = ΔCBA (c.c.c))
⇒SDGG' = 24/3 = 8(cm2)
Bạn ơi, đề câu a sai nhé ! Mình đọc không có điểm I nha !