K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

SAO ĐỢT NÀY TRỪ ÍT ĐIỂM Z OLM

4 tháng 10 2017

-2/x=x/-8/25

4 tháng 10 2017

a) \(n^2+n+1=n\left(n+1\right)+1\)

Ta có \(n\left(n+1\right)⋮2\)vì \(n\left(n+1\right)\)là tích 2 số TN liên tiếp . Do đó \(n\left(n+1\right)+1\)không chia hết cho 2

b) \(n^2+n+1=n\left(n+1\right)+1\)

Ta có \(n\left(n+1\right)\)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra \(n\left(n+1\right)\)tận cùng bằng 1,3,7 không chia hết cho 5

bạn bấm vào dòng chữ xanh này nhé

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

31 tháng 1 2021

n 2+n+1 = n(n + 1) +1.

Vì n(n+1) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là 0, 2, 6

Do đó n(n+1) + 1 có chữ số tận cùng là 1, 3, 7.

Vì 1, 3, 7 không chia hết cho 2 và 5 nên n(n+1) + 1 không chia hết cho 2 và 5

Vậy n 2+n+1 không chia hết cho 2 và 5

31 tháng 1 2021

a) n2+n+1=n(n+1)+1

Ta có n(n+1)⋮2vì n(n+1)n(n+1)là tích 2 số TN liên tiếp . Do đó n(n+1)+1không chia hết cho 2

n2+n+1=n(n+1)+1

Ta có n(n+1)l là tích của 2 số TN liên tiếp nên tận cùng bằng 0,2,6 . Suy ra n(n+1)tận cùng bằng 1,3,7 không chia hết cho 5

8 tháng 12 2015

a)Nếu n=2k(kEN)

thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)

Nếu n=2k+1(kEN)

thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)

Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2

b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n

Nếu n=2k(kEN )

thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)

Nếu n=2k+1(kEN)

thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................

tương tự, n=3k;3k+1;3k+2

mỏi tay chết đi được, mấy con số còn bay đi lung tung

17 tháng 8 2023

\(A=3+3^2+...+3^{101}+3^{102}\) (thêm 33 bi sót)

\(\Rightarrow A+1=1+3+3^2+...+3^{101}+3^{102}\)

\(\Rightarrow A+1=\dfrac{3^{102+1}-1}{3-1}\)

\(\Rightarrow A+1=\dfrac{3^{103}-1}{2}\)

\(\Rightarrow A=\dfrac{3^{103}-1}{2}-1\)

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\)

mà \(\left(3^{102}-1\right)\) không chia hết cho 2;4;5

\(\Rightarrow A=\dfrac{3\left(3^{102}-1\right)}{2}\) không chia hết cho 2;4;5

\(\Rightarrow A\) không chia hết cho 40 \(\left(vì40=2.4.5\right)\)

17 tháng 8 2023

\(B=4+4^2+4^3+...+4^{99}\)

\(\Rightarrow B=4\left(1+4^1+4^2\right)+4^4\left(1+4^1+4^2\right)...+4^{97}\left(1+4^1+4^2\right)\)

\(\Rightarrow B=4.21+4^4.21+...+4^{97}.21\)

\(\Rightarrow B=21\left(4+4^4+...+4^{97}\right)⋮21\)

\(\Rightarrow dpcm\)

22 tháng 8 2019

a)(5n+7)(4n+6)=20n^2+58n+42

Ta thấy 20;58;42 chia hết cho 2 nên (5n+7)(4n+6) chia hết cho 2

b)(8n+1)(6n+5)=40n^2+46n+5

Ta thấy 20;46 chia hết cho 2 và 5 ko chia hết cho 2 nên (8n+1)(6n+5)  ko chia hết cho 2

9 tháng 8 2016

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó  nên

       * Vậy A chia hết cho 27

9 tháng 8 2016

Đây là toán lớp 7 chứ toán 8 gì hum