K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Hình vẽ:

A B C M H K

Giải:

a) Xét tam giác AMB và tam giác AMC, có:

\(AB=AC\left(gt\right)\)

\(MB=MC\) (M là trung điểm BC)

AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)

b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)

\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)

c) Xét tam giác AHM và tam giác AKM, có:

\(AH=AK\left(gt\right)\)

\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))

AM là cạnh chung

\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)

\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)

\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)

d) Ta có: \(AB=AC\left(gt\right)\)

Lại có: \(AH=AK\left(gt\right)\)

Lấy vễ trừ theo vế, ta được:

\(AB-AH=AC-AK\)

\(\Leftrightarrow BH=CK\)

Xét tam giác BHM và tam giác CKM, có:

\(BH=CK\) (Chứng minh trên)

\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)

\(MB=MC\) (M là trung điểm BC)

\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)

27 tháng 12 2017

a.

Xét \(\Delta ABM\)\(\Delta ACM\) có :

\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)

b.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)

c.

\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)

Xét \(\Delta AHM\)\(\Delta AKM\) có :

\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)

\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)

=> MA là tia phân giác góc HMK

d.

AB=AC

AH=AK

=> BH=CK

AB=AC => tg ABC cân tại A

=> góc B = góc C

Xet \(\Delta BHM\)\(\Delta CKM\) có :

\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)

21 tháng 12 2020

a) Xét ΔAMB và ΔAMC có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔAMB=ΔAMC(c-c-c)

b) Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

c) Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

hay \(\widehat{HAM}=\widehat{KAM}\)

Xét ΔAHM và ΔAKM có

AH=AK(gt)

\(\widehat{HAM}=\widehat{KAM}\)(cmt)

AM chung

Do đó: ΔAHM=ΔAKM(c-g-c)

\(\widehat{HMA}=\widehat{KMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MH và MK

nên MA là tia phân giác của \(\widehat{HAK}\)(đpcm)

d) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\widehat{B}=\widehat{C}\)

Ta có: AH+HB=AB(H nằm giữa A và B)

AK+KC=AC(K nằm giữa A và C)

mà AB=AC(gt)

và AH=AK(gt)

nên HB=KC

Xét ΔHBM và ΔKCM có 

HB=KC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)

BM=MC(M là trung điểm của BC)

Do đó: ΔHBM=ΔKCM(c-g-c)

17 tháng 1 2022

a) Xét ∆ AMB và ∆ AMC:

AM chung.

AB = AC (gt).

MB = MC (M là trung điểm của BC).

=> ∆ AMB = ∆ AMC (c - c - c).

b) Xét tứ giác ACBN:

M là trung điểm của BC (gt).

M là trung điểm của AN (AM = MN).

=> Tứ giác ACBN là hình bình hành (dhnb).

Mà AB = AC (gt).

=> Tứ giác ACBN là hình thoi (dhnb).

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

27 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM