Cho ΔABC có AB=AC, M là trung điểm của BC
a) Chứng minh ΔAMB=ΔAMC. Suy ra góc AMB=AMC
b)Chứng minh AM\(\perp\)BC
c)Trên cạnh AB, AC lần lượt lấy điểm H và điểm K sao cho AH=AK. Chứng minh ΔAHM=ΔAKM và MA là tia phân giác của góc HMK
d) Chứng minh: ΔBHM=ΔCKM
Hình vẽ:
Giải:
a) Xét tam giác AMB và tam giác AMC, có:
\(AB=AC\left(gt\right)\)
\(MB=MC\) (M là trung điểm BC)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}\) (Hai góc tương ứng)
b) Ta có: \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
\(\Leftrightarrow AM\perp BC\left(đpcm\right)\)
c) Xét tam giác AHM và tam giác AKM, có:
\(AH=AK\left(gt\right)\)
\(\widehat{HAM}=\widehat{KAM}\) (\(\Delta AMB=\Delta AMC\))
AM là cạnh chung
\(\Rightarrow\Delta AHM=\Delta AKM\left(c.g.c\right)\)(đpcm)
\(\Leftrightarrow\widehat{AMH}=\widehat{AMK}\) (Hai cạnh tương ứng)
\(\Leftrightarrow\) MA là tia phân giác của \(\widehat{HMK}\) (đpcm)
d) Ta có: \(AB=AC\left(gt\right)\)
Lại có: \(AH=AK\left(gt\right)\)
Lấy vễ trừ theo vế, ta được:
\(AB-AH=AC-AK\)
\(\Leftrightarrow BH=CK\)
Xét tam giác BHM và tam giác CKM, có:
\(BH=CK\) (Chứng minh trên)
\(HM=HK\left(\Delta AHM=\Delta AKM\right)\)
\(MB=MC\) (M là trung điểm BC)
\(\Rightarrow\Delta BHM=\Delta CKM\left(c.c.c\right)\) (đpcm)
a.
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
\(AB=AC\left(gt\right)\\ AM\left(chung\right)\\ BM=CM\\ \Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC}\)
b.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\\ \Rightarrow AM\perp BC\)
c.
\(\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{BAM}=\widehat{CAM}\)
Xét \(\Delta AHM\) và \(\Delta AKM\) có :
\(AH=AK\left(gt\right)\\ \widehat{HAM}=\widehat{KAM}\left(cmt\right)\\ AM\left(chung\right)\\ \Rightarrow\Delta AHM=\Delta AKM\left(c-g-c\right)\)
\(\Rightarrow\widehat{HMA}=\widehat{KMA}\)
=> MA là tia phân giác góc HMK
d.
AB=AC
AH=AK
=> BH=CK
AB=AC => tg ABC cân tại A
=> góc B = góc C
Xet \(\Delta BHM\) và \(\Delta CKM\) có :
\(BH=CK\left(cmt\right)\\ \widehat{B}=\widehat{C}\\ MB=MC\\ \Rightarrow\Delta BHM=\Delta CKM\left(c-g-c\right)\)