K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

\(pt\Leftrightarrow2sinx.cosx+\left(sinx+cosx\right)-2=m\)
đặt \(sinx+cosx=t\) , do \(x\in\left(0;\dfrac{3\pi}{4}\right)\) thì \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\).
Vì vậy \(t=sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có tập giá trị là \(\left(0;\sqrt{2}\right)\).
Suy ra \(2sinxcosx=t^2-1\), ta có phương trình:
\(t^2-1+t-2=m\Leftrightarrow t^2+t-3=m\) với \(t\in\left(0;\sqrt{2}\right)\).
Xét hàm số \(f\left(t\right)=t^2+t-3\)\(f'\left(t\right)=2t+1\ge0\) với mọi \(t\in\left(0;\sqrt{2}\right)\).
Suy ra hàm số \(f\left(t\right)=t^2+t-3\) đồng biến trên khoảng \(\left(0;\sqrt{2}\right)\).
\(f\left(0\right)=-3;f\left(\sqrt{2}\right)=\sqrt{2}-1\).
Vậy với \(-3< m< \sqrt{2}-1\) thì \(t^2+t-3=m\) có nghiệm duy nhất.
Quay trở lại phép đặt t ta có: \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) . Để phương trình \(t=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\) có hai nghiệm thuộc khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) thì \(t\) nhận các giá trị tương ứng với \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\dfrac{3\pi}{4}\right)\) hay \(\dfrac{\sqrt{2}}{2}< t< 1\).
Suy ra \(\dfrac{-5+\sqrt{2}}{2}< m< 0\),

1 tháng 2 2018

Bài giả của bạn Bùi Thị Vân có nhầm lẫn, đáp số bạn Vân đưa ra là \(\dfrac{-5+\sqrt{2}}{2}< m< 0\). Có thể thấy \(m=-1\) thuộc khoảng \(\left(\dfrac{-5+\sqrt{2}}{2};0\right)\) nhưng với \(m=-1\) thì phương trình \(t^2+t-3=m\Leftrightarrow t^2+t-3=-1\)\(\Leftrightarrow t=1;t=-2\). Phương trình đã cho tương đương với \(\sin x+\cos x=1\Leftrightarrow\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\). Đặt \(y=x+\dfrac{\pi}{4}\) thì \(\dfrac{\pi}{4}< y< \pi\) (do \(x\in\left(0;\dfrac{3\pi}{4}\right)\)) và phương trình trở thành \(\sin y=\dfrac{1}{\sqrt{2}}\). Trong khoảng \(\dfrac{\pi}{4}< y< \pi\)phương trình \(\sin y=\dfrac{1}{\sqrt{2}}\) có nghiệm duy nhất \(y=\dfrac{3\pi}{4}\) nên phương trình đã cho có nghiệm duy nhất \(x=\dfrac{\pi}{2}\) (chứ không phải là có đúng hai nghiệm như yêu cầu đề bài). Xin sửa lại bài giải như sau:

- Đặt \(t=\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\left(\sin x+\cos x\right)\) thì \(t\sqrt{2}=\sin x+\cos x\Rightarrow2t^2=1+2\sin x\cos x=1+\sin2x\) nên \(\sin2x=2t^2-1\), phương trình đã cho trở thành \(2t^2-1+\sqrt{2}t-2=m\Leftrightarrow2t^2+\sqrt{2}t-3=m\) (1)

-Vì phương trình đã cho được xét trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\) tức là \(x+\dfrac{\pi}{4}\in\left(\dfrac{\pi}{4};\pi\right)\) suy ra \(t=\sin\left(x+\dfrac{\pi}{4}\right)\in(0;1]\). Do đó để phương trình đã cho có nghiệm \(x\in\left(0;\dfrac{3\pi}{4}\right)\), điều kiện cần và đủ là (1) có nghiệm \(t\in(0;1]\), tức là số \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với \(t\in(0;1]\). Ta có \(f'\left(t\right)=4t+\sqrt{2}>0,\)\(\forall t\in(0;1]\) nên \(f\left(t\right)\)đồng biến trong khoảng \(t\in(0;1]\) và tập giá trị của nó là khoảng \((f\left(0\right);f\left(1\right)]=(-3;\sqrt{2}-1]\). Như vậy điều kiện cần để yêu cầu bài toán được thực hiện là \(m\in(-3;\sqrt{2}-1]\).

- Với \(m\in(-3;\sqrt{2}-1]\), chú ý rằng \(f\left(t\right)\) đồng biến trong khoảng \(t\in(0;1]\) nên (1) có nghiệm duy nhất \(t_0\in(0;1]\) và phương trình đã cho tương đương với \(\sin\left(x+\dfrac{\pi}{4}\right)=t_0\) (2). Ta cần đếm số nghiệm của (2) trong khoảng \(\left(0;\dfrac{3\pi}{4}\right)\). Để làm điều đó, ta đặt \(y=x+\dfrac{\pi}{4}\Leftrightarrow x=y-\dfrac{\pi}{4}\) thì (2) trở thành \(\sin y=t_0\)\(y\in\left(\dfrac{\pi}{4};\pi\right)\).

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Hình trên biểu diễn đồ thị hàm số \(y=\sin x\) với \(x\in(\dfrac{\pi}{4};\pi]\). Ta thấy phương trình \(\sin y=t_0\) có 2 nghiệm trong khoảng này khi và chỉ khi \(\dfrac{\sqrt{2}}{2}< t_0< 1\), tức là \(m\) phải thuộc tập giá trị của hàm số \(f\left(t\right)=2t^2+\sqrt{2}t-3\) với

\(t\in\left(\dfrac{\sqrt{2}}{2};1\right)\), điều này xảy ra khi và chỉ khi \(f\left(\dfrac{\sqrt{2}}{2}\right)< m< f\left(1\right)\Leftrightarrow-1< m< \sqrt{2}-1\).

Đáp số: \(-1< m< \sqrt{2}-1\).

Chú ý: Bài toán này có thể giải không dùng đạo hàm. Các bạn thử tìm một cách giải như vậy.

16 tháng 5 2019

14 tháng 5 2019

Đáp án B

sin 2 x + 2 sin x + π 4 − 2 = m ( * ) ⇔ 2 sin x + π 4 2 2 sin x + π 4 = m + 3

Đặt t = 2 sin x + π 4 . Vì x ∈ 0 ; 3 π 4  nên t ∈ 0 ; 2 .

Khi đó phương trình (*) trở thành:

t 2 + t − m − 3 = 0 ( 1 )

Để phương trình (*) có đúng hai nghiệm thuộc khoảng   0 ; 3 π 4  phương trình (1) có đúng một nghiệm thuộc khoảng  0 ; 2

TH1

  Δ = 0 0 < − b 2 a < 2 ⇔ 4 m + 4 = 0 0 < − 1 2 < 2 ( V L )

TH2

  Δ > 0 f ( 0 ) f ( 2 ) < 0 ⇔ 4 m + 4 > 0 − m − 3 2 − 1 − m < 0 ⇔ m ∈ − 1 ; 2 − 1

 

 

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).Câu 4: Giá trị...
Đọc tiếp

Câu 1: Tích các nghiệm trên khoảng \(\left(\dfrac{\pi}{4};\dfrac{7\pi}{4}\right)\)của phương trình \(cos2x-3cosx+2=0\) 

Câu 2: Tìm tất cả các giá trị thực của tham số m để phương trình \(2cos^23x+\left(3-2m\right)cos3x+m-2=0\) có đúng 3 nghiệm thuộc khoảng \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\).

Câu 3: Tính tổng T tất cả các nghiệm của phương trình \(2sin^2\dfrac{x}{4}-3cos\dfrac{x}{4}=0\) trên đoạn \(\left[0;8\pi\right]\).

Câu 4: Giá trị của m để phương trình \(cos2x-\left(2m+1\right)sinx-m-1=0\) có nghiệm trên khoảng \(\left(0;\pi\right)\) là \(m\in[a;b)\) thì a+b là?

Câu 5: Điều kiện cần và đủ để phương trình \(msinx-3cosx=5\) có nghiệm là \(m\in(-\infty;a]\cup[b;+\infty)\) với \(a,b\in Z\). Tính a+b.

Câu 6: Điều kiện để phương trình \(msinx-3cosx=5\) có nghiệm là? 

Câu 7: Số nghiệm để phương trình \(sin2x+\sqrt{3}cos2x=\sqrt{3}\) trên khoảng \(\left(0;\dfrac{\pi}{2}\right)\) là?

Câu 8: Tập giá trị của hàm số \(y=\dfrac{sinx+2cosx+1}{sinx+cosx+2}\) là?

Câu 9: Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\) dể phương trình \(\left(m+1\right)sin^2-sin2x+cos2x=0\) có nghiệm?

Câu 10: Có bao nhiêu giá trị nguyên của tham số m để phương trình \(sin2x-cos2x+|sinx+cosx|-\sqrt{2cos^2x+m}-m=0\) có nghiệm thực?

3
1 tháng 8 2021

1.

\(cos2x-3cosx+2=0\)

\(\Leftrightarrow2cos^2x-3cosx+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(x=k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow\) không có nghiệm x thuộc đoạn

\(x=\pm\dfrac{\pi}{3}+k2\pi\in\left[\dfrac{\pi}{4};\dfrac{7\pi}{4}\right]\Rightarrow x_1=\dfrac{\pi}{3};x_2=\dfrac{5\pi}{3}\)

\(\Rightarrow P=x_1.x_2=\dfrac{5\pi^2}{9}\)

1 tháng 8 2021

2.

\(pt\Leftrightarrow\left(cos3x-m+2\right)\left(2cos3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=\dfrac{1}{2}\left(1\right)\\cos3x=m-2\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)

Ta có: \(x=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\pm\dfrac{\pi}{9}\)

Yêu cầu bài toán thỏa mãn khi \(\left(2\right)\) có nghiệm duy nhất thuộc \(\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\m-2=1\\m-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=3\\m=1\end{matrix}\right.\)

TH1: \(m=2\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=\dfrac{\pi}{6}\left(tm\right)\)

\(\Rightarrow m=2\) thỏa mãn yêu cầu bài toán

TH2: \(m=3\)

\(\left(2\right)\Leftrightarrow cos3x=0\Leftrightarrow x=\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow x=0\left(tm\right)\)

\(\Rightarrow m=3\) thỏa mãn yêu cầu bài toán

TH3: \(m=1\)

\(\left(2\right)\Leftrightarrow cos3x=-1\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\in\left(-\dfrac{\pi}{6};\dfrac{\pi}{3}\right)\Rightarrow\left[{}\begin{matrix}x=\pm\dfrac{1}{3}\\x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán

Vậy \(m=2;m=3\)

5 tháng 4 2019

Đáp án A

6 tháng 11 2018

NV
12 tháng 5 2021

1.

ĐKXĐ: \(1-x^2>0\Leftrightarrow0< x< 1\)

Pt tương đương:

\(x=5-2m\)

Pt có nghiệm khi và chỉ khi: 

\(0< 5-2m< 1\) \(\Leftrightarrow2< m< \dfrac{5}{2}\)

2.

\(M=\dfrac{\dfrac{sina.cosa}{cos^2a}}{\dfrac{sin^2a}{cos^2a}-\dfrac{cos^2a}{cos^2a}}=\dfrac{tana}{tan^2a-1}=\dfrac{\left(-\dfrac{2}{3}\right)}{\left(-\dfrac{2}{3}\right)^2-1}=-\dfrac{6}{5}\)