Phân tích đa thức thành nhân tử : (4x + 1)(12x – 1)(3x + 2)(x + 1) – 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(x^3-3x^2-4x+12\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-4\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)
\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(p=x^2-4,5x-8\)ta có :
\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)
\(A=p^2-\left(2,5x\right)^2+4x^2\)
\(A=p^2-6,25x^2+4x^2\)
\(A=p^2-2,25x^2\)
\(A=p^2-\left(1,5x\right)^2\)
\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)
Thay \(p=x^2-4,5x-8\)vào A ta có :
\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)
\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)
\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)
\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(x^2-2x-8=t\)
Ta có : \(\left(t-5x\right)t+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)
Học tốt ~~
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
\(1)x^3-x^2y-4x-4y=x^2\left(x-y\right)-4\left(x-y\right)=\left(x^2-2^2\right)\left(x-y\right)=\left(x^2-4x+4\right)\left(x-y\right)\)
\(2)x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x-1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x-1\right)\)
\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=x^2\left(x^2+2x+1\right)+x+1\)
\(=x^2\left(x+1\right)^2+x+1\)
\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
\(x^4+2x^3+x^2+x+1\)
\(=x^2\left(x+1\right)^2+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x^2+1\right)\)
Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)
\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)