Cho tam giác BAC nhọn đường cao AH. Kẻ HM vuong góc với AB, HN vuoong góc AC.
a/CMR: ABC đồng dạng ANM(đã làm)
b/MN cắt AH tại K. CMR KH.KA=KM.KN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý cuối câu b.
Sử dụng công thức tính diện tích tam giác ABC. Ta có:
\(\frac{1}{2}AB.\sin\widehat{A}.AC=\frac{1}{2}AH.BC\)
=> \(AB.\sin\widehat{A}.AC=AH.BC\)
Ta đã tính được: \(AH=3\sqrt{3};AB=6;AC=2\sqrt{13};MN=\frac{18\sqrt{13}}{13};BC=8\) ( để tính MN sử dụng tam giác đồng dạng ở câu b ý 1 nha)
=> \(\sin\widehat{A}.AH=\frac{AH^2.BC}{AB.AC}=\frac{18\sqrt{13}}{13}=MN\)
a/
Ta có
HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AC//HK (Trong hbh 2 cạnh đối // với nhau)
b/
Ta có
\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC
Mà HK//AC (cmt)
\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng
=> AC//MK => MNCK là hình thang
Ta có
AC//MK => AN//MH
\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{A}=90^o\)
=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)
Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)
=> MN=CK
=> hình thang MNCK có MN = CK => MNCK là hình thang cân
c/
Xét tg AHC có
OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)
HI=CI (gt)
=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)
Xét hình bình hành ACKH có
\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)
\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)
a: Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=15^2+20^2=625\)
=>\(BC=\sqrt{625}=25\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(3\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(4\right)\)
Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)
=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN đồng dạng với ΔACB
c: Ta có: ΔABC vuông tại A
mà AK là đường trung tuyến
nên AK=KC=KB
Ta có: KA=KC
=>ΔKAC cân tại K
=>\(\widehat{KAC}=\widehat{KCA}\)
Ta có: ΔAMN đồng dạng với ΔACB
=>\(\widehat{ANM}=\widehat{ABC}\)
Ta có: \(\widehat{KAC}+\widehat{ANM}\)
\(=\widehat{ABC}+\widehat{KCA}=90^0\)
=>AK\(\perp\)MN tại I
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)
=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)
=>BH=225/25=9(cm); CH=400/25=16(cm)
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\)
=>\(AM\cdot15=12^2\)=144
=>AM=144/15=9,6(cm)
Ta có: AMHN là hình chữ nhật
=>AH=MN
mà AH=12cm
nênMN=12cm
Ta có: ΔANM vuông tại A
=>\(AN^2+AM^2=NM^2\)
=>\(AN^2+9,6^2=12^2\)
=>AN=7,2(cm)
Xét ΔIMA vuông tại I và ΔAMN vuông tại A có
\(\widehat{IMA}\) chung
Do đó: ΔIMA đồng dạng với ΔAMN
=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)
=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)
link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac
k mk nhé thanks
Này người lạ ơi
.
. đừng nhìn đi đâu
- đúng rồi
- là bạn đó
- cho mình xin 1 ( t í c h) nhé :)
- còn việc kết bạn cứ để mik lo
còn on ko
:v hỏi chi z