tìm x
4-x=2.(x-4)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)
\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)
\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)
Bài 2:
\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)
Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:
\(\left(y-1\right)\left(y+1\right)=120\)
\(\Leftrightarrow y^2-1=120\)
\(\Leftrightarrow y^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)
+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)
\(\Leftrightarrow x^2+5x-6=0\)
\(\Leftrightarrow x^2-x+6x-6=0\)
\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)
+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)
\(\Leftrightarrow x^2+5x+16=0\)
\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)
\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)
Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)
\(\Rightarrow\) loại
Vậy \(x\in\left\{1;-6\right\}\).
\(b,\) Đề thiếu vế phải rồi bạn.
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
a. \(\dfrac{3}{4}\) + \(\dfrac{-4}{5}\) - \(\dfrac{1}{2}\) = \(\dfrac{-1}{20}\) - \(\dfrac{1}{2}\) = \(\dfrac{-11}{20}\)
b. (4 - \(\dfrac{5}{12}\) ): 2 + \(\dfrac{5}{24}\)
= \(\dfrac{43}{12}\) : 2 + \(\dfrac{5}{24}\)
= \(\dfrac{43}{24}\) + \(\dfrac{5}{24}\)
=\(\dfrac{48}{24}\) = 2
2.2
\(\dfrac{4}{7}\) .x - \(\dfrac{2}{3}\) = \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\) x = \(\dfrac{1}{5}\) + \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\) . x = \(\dfrac{13}{15}\)
x = \(\dfrac{91}{60}\)
2.1
\(a)\dfrac{3}{4}+\dfrac{-4}{5}-\dfrac{1}{2}\\ =\dfrac{3\times5}{4\times5}+\dfrac{-4\times4}{5\times4}-\dfrac{1\times10}{2\times10}\\ =\dfrac{15}{20}+\dfrac{-16}{20}-\dfrac{10}{20}\\ =\dfrac{15-16-10}{20}\\ =\dfrac{-11}{20}\)
\(b)\left(4-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{4\times12}{1\times12}-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{48}{12}-\dfrac{5}{12}\right):2+\dfrac{5}{24}\\ =\left(\dfrac{48-5}{12}\right):2+\dfrac{5}{24}\\ =\dfrac{43}{12}:2+\dfrac{5}{24}\\ =\dfrac{43}{12}\times\dfrac{1}{2}+\dfrac{5}{24}\\ =\dfrac{43}{24}+\dfrac{5}{24}\\ =\dfrac{43+5}{24}\\ =\dfrac{48}{24}\\ =2\)
\(\dfrac{4}{5}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{4}\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{11}{20}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{11}{20}\\x+\dfrac{1}{2}=-\dfrac{11}{20}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{20}\\x=-\dfrac{21}{20}\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{11}{20}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{11}{20}\left(x\ge-\dfrac{1}{2}\right)\\x+\dfrac{1}{2}=-\dfrac{11}{20}\left(x< -\dfrac{1}{2}\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{20}\left(tm\right)\\x=-\dfrac{21}{20}\left(tm\right)\end{matrix}\right.\)
\(4-x=2\left(x-4\right)^2\)
\(\Leftrightarrow2\left(x-4\right)^2+x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)