Tìm x để biểu thức sau đạt giá trị lớn nhất
C=\(\dfrac{1}{\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:
\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)
Vậy: Khi x=4 thì B=3
b) Ta có: P=A-B
\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)
\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)
\(G\in Z\Leftrightarrow\dfrac{7}{\sqrt{x}-3}\in Z\)
Tại \(x\in N\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in N\\\sqrt{x}\in I\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\in I\end{matrix}\right.\)
TH1: \(\sqrt{x}-3\in I\) \(\Rightarrow\dfrac{7}{\sqrt{x}-3}\notin Z\forall x\) thỏa mãn đk
\(TH2:\sqrt{x}-3\in Z\).Để \(\dfrac{7}{\sqrt{x}-3}\in Z\) \(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(\Leftrightarrow x\in\left\{4;16;100\right\}\)
Tại x=4 =>G=-5
Tại x=16=>G=9
Tại x=100=>G=3
Vậy tại x=6 thì \(G_{max}\)=9
(I là số vô tỉ)
\(G=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\)
Để \(G\in Z\Rightarrow7⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)
mà \(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{1;7;-1\right\}\)
Để \(G_{max}\Rightarrow\dfrac{7}{\sqrt{x}-3}_{max}\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3>0\\\sqrt{x}-3_{min}\end{matrix}\right.\Rightarrow\sqrt{x}-3=1\Rightarrow x=4\)
\(\Rightarrow G_{max}=5\)
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`
Lời giải:
$M=\frac{2(\sqrt{x}-3)+7}{\sqrt{x}-3}=2+\frac{7}{\sqrt{x}-3}$
Để $M$ nguyên thì $\frac{7}{\sqrt{x}-3}$
Với $x$ nguyên không âm thì điều này xảy ra khi mà $\sqrt{x}-3$ là ước của $7$
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow \sqrt{x}\in \left\{4; 2; 10; -4\right\}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}\in \left\{4; 2; 10\right\}$
$\Rightarrow x\in \left\{16; 4; 100\right\}$ (tm)
`B = (\sqrt{x} + 3)/(\sqrt{x} - 3)`
`=>B = (6 + \sqrt{x} -3)/(\sqrt{x} - 3)`
`=>B = 1 + 6/(\sqrt{x-3})`
Để `B` đạt gt lớn nhất
`=>6 \vdots \sqrt{x-3}`
`=>12 \vdots (x-3)`
`=>(x-3)\in Ư(12) = {+-1;+-2;+-3;+-4;+-6;+-12}`
Do `x` là stn
`=>(x-3) \in {1;2;3;4;6;12}`
`=>x = 15`
Vậy `x=15`
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
\(B+1=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}+1=\dfrac{3\sqrt{x}+2}{\sqrt{x}+3}>0\Rightarrow B>-1\)
\(B-2=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}-2=\dfrac{-7}{\sqrt{x}+3}< 0\Rightarrow B< 2\)
\(\Rightarrow\left[{}\begin{matrix}B=0\\B=1\end{matrix}\right.\)
- Với \(B=0\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\notin Z\) (loại)
- Với \(B=1\Rightarrow2\sqrt{x}-1=\sqrt{x}+3\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
nên \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
anh có thể giải chi tiết hơn giúp em được không ạ