Cho 2aa + bb = 3cc
Tính: 2015a-b + 2016b-c + 2017c-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2015a}{2015c}=\frac{2016b}{2016d}\)
\(=\frac{2015a-2016b}{2015c-2016d}=\frac{2015a+2016b}{2015c+2016d}\)
\(\Rightarrow\frac{2015a-2016b}{2015a+2016b}=\frac{2015c-2016d}{2015c+2016d}\)(đpcm)
Từ \(\frac{a}{b}=\frac{c}{d}\)ta suy ra:
\(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a-b}{a+b}=\frac{c-d}{c+d}\Rightarrow\frac{2015a-2016b}{2015a+2016b}\)\(=\frac{2015c-2016d}{2015c+2016d}\)(Áp dụng tính chất dãy tỉ số bằng nhau)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015bk-2016b}{2016dk+2017d}=\dfrac{2015k-2016}{2016k+2017}\)
\(\dfrac{2015c-2016d}{2016a+2017b}=\dfrac{2015dk-2016d}{2016bk+2017b}=\dfrac{2015k-2016}{2016k+2017}\)
Do đó: \(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015c-2016d}{2016a+2017b}\)
tham khảo bài tương tự này :
Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath
Ta có \(a^{14}+b^{14}=a^{15}+b^{15}\Leftrightarrow a^{15}-a^{14}=b^{14}-b^{15}\Leftrightarrow a^{14}\left(a-1\right)=b^{14}\left(1-b\right)\Leftrightarrow\dfrac{a-1}{1-b}=\dfrac{b^{14}}{a^{14}}\left(1\right)\)
ta lại có \(a^{15}+b^{15}=a^{16}+b^{16}\Leftrightarrow a^{16}-a^{15}=b^{15}-b^{16}\Leftrightarrow a^{15}\left(a-1\right)=b^{15}\left(1-b\right)\Leftrightarrow\dfrac{a-1}{b-1}=\dfrac{b^{15}}{a^{15}}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\dfrac{b^{14}}{a^{14}}=\dfrac{b^{15}}{a^{15}}\Leftrightarrow\dfrac{b^{15}}{a^{15}}-\dfrac{b^{14}}{a^{14}}=0\Leftrightarrow\dfrac{b^{14}}{a^{14}}\left(\dfrac{a}{b}-1\right)=0\Leftrightarrow\dfrac{a}{b}-1=0\)(vì \(\dfrac{a^{14}}{b^{14}}\) là số dương)\(\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\)
Vậy thay vào P=2015a-2016b=2015a-2016a=-a=-b
Vậy P=-a=-b
Lời giải:
Do $a, b, c$ không có vai trò như nhau nên không thể giả sử \(a>b> c\) hoặc bất cứ TH nào khác mà chỉ có thể xét các TH.
Từ \(2a^a+b^b=3c^c\Leftrightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}=3\) (*)
+) Nếu \(a=b=c\) thì hiển nhiên (*) đúng
\(2015^{a-b}+2016^{b-c}+2017^{c-a}=2015^0+2016^0+2017^0=3\)
+) Nếu tồn tại hai số bằng nhau thì hiển nhiên số còn lại cũng bằng 2 số đó. Giống như TH trên ta thu được giá trị biểu thức bằng 3
+) Nếu $a,b,c$ đôi một khác nhau
\(c=\min (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}>2+1=3\) (trái với (*))
\(c=\max (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}< 2+1=3\) (trái với (*))
Do đó $c$ nằm giữa $a$ và $b$
Giả sử \(a> c> b\)
\(\Rightarrow a\geq c+1\)
\(\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}>\frac{2(c+1)^{c+1}}{c^c}\)
Ta có: \(2(c+1)^{c+1}>2(c+1).c^c\geq 2(1+1)c^c> 4c^c\)
\(\Rightarrow 3> \frac{2(c+1)^{c+1}}{c^c}> 4\) (mâu thuẫn)
Giả sử \(b> c> a\Rightarrow b\geq c+1\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}> \frac{(c+1)^{c+1}}{c^c}\)
\(c=1\Rightarrow 3> \frac{(1+1)^{1+1}}{1^1}=4\) (vô lý)
\(c\geq 2\Rightarrow (c+1)^{c+1}=(c+1)(c+1)^c\geq 3(c+1)^c> 3c^c\)
\(\Rightarrow 3> \frac{(c+1)^{c+1}}{c^c}> 3\) (mâu thuẫn)
-------------------
Vậy \(a=b=c\) và giá trị biểu thức bằng 3
Thánh lm cx chưa nổi !!
Ribi Nkok Ngok
Nguyễn Thanh Hằng
Akai Haruma
Nguyễn Huy Tú
Nguyễn Nam
lê thị hương giang
Võ Đông Anh Tuấn