K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Do $a, b, c$ không có vai trò như nhau nên không thể giả sử \(a>b> c\) hoặc bất cứ TH nào khác mà chỉ có thể xét các TH.

Từ \(2a^a+b^b=3c^c\Leftrightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}=3\) (*)

+) Nếu \(a=b=c\) thì hiển nhiên (*) đúng

\(2015^{a-b}+2016^{b-c}+2017^{c-a}=2015^0+2016^0+2017^0=3\)

+) Nếu tồn tại hai số bằng nhau thì hiển nhiên số còn lại cũng bằng 2 số đó. Giống như TH trên ta thu được giá trị biểu thức bằng 3

+) Nếu $a,b,c$ đôi một khác nhau

\(c=\min (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}>2+1=3\) (trái với (*))

\(c=\max (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}< 2+1=3\) (trái với (*))

Do đó $c$ nằm giữa $a$ và $b$

Giả sử \(a> c> b\)

\(\Rightarrow a\geq c+1\)

\(\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}>\frac{2(c+1)^{c+1}}{c^c}\)

Ta có: \(2(c+1)^{c+1}>2(c+1).c^c\geq 2(1+1)c^c> 4c^c\)

\(\Rightarrow 3> \frac{2(c+1)^{c+1}}{c^c}> 4\) (mâu thuẫn)

Giả sử \(b> c> a\Rightarrow b\geq c+1\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}> \frac{(c+1)^{c+1}}{c^c}\)

\(c=1\Rightarrow 3> \frac{(1+1)^{1+1}}{1^1}=4\) (vô lý)

\(c\geq 2\Rightarrow (c+1)^{c+1}=(c+1)(c+1)^c\geq 3(c+1)^c> 3c^c\)

\(\Rightarrow 3> \frac{(c+1)^{c+1}}{c^c}> 3\) (mâu thuẫn)

-------------------

Vậy \(a=b=c\) và giá trị biểu thức bằng 3

19 tháng 12 2017

Thánh lm cx chưa nổi !!

Ribi Nkok Ngok

Nguyễn Thanh Hằng

Akai Haruma

Nguyễn Huy Tú

Nguyễn Nam

lê thị hương giang

Võ Đông Anh Tuấn

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2015a}{2015c}=\frac{2016b}{2016d}\)

                                       \(=\frac{2015a-2016b}{2015c-2016d}=\frac{2015a+2016b}{2015c+2016d}\)

\(\Rightarrow\frac{2015a-2016b}{2015a+2016b}=\frac{2015c-2016d}{2015c+2016d}\)(đpcm)

8 tháng 11 2019

Từ \(\frac{a}{b}=\frac{c}{d}\)ta suy ra:

\(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}=\frac{a-b}{a+b}=\frac{c-d}{c+d}\Rightarrow\frac{2015a-2016b}{2015a+2016b}\)\(=\frac{2015c-2016d}{2015c+2016d}\)(Áp dụng tính chất dãy tỉ số bằng nhau)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015bk-2016b}{2016dk+2017d}=\dfrac{2015k-2016}{2016k+2017}\)

\(\dfrac{2015c-2016d}{2016a+2017b}=\dfrac{2015dk-2016d}{2016bk+2017b}=\dfrac{2015k-2016}{2016k+2017}\)

Do đó: \(\dfrac{2015a-2016b}{2016c+2017d}=\dfrac{2015c-2016d}{2016a+2017b}\)

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

1 tháng 12 2018

Ta có \(a^{14}+b^{14}=a^{15}+b^{15}\Leftrightarrow a^{15}-a^{14}=b^{14}-b^{15}\Leftrightarrow a^{14}\left(a-1\right)=b^{14}\left(1-b\right)\Leftrightarrow\dfrac{a-1}{1-b}=\dfrac{b^{14}}{a^{14}}\left(1\right)\)

ta lại có \(a^{15}+b^{15}=a^{16}+b^{16}\Leftrightarrow a^{16}-a^{15}=b^{15}-b^{16}\Leftrightarrow a^{15}\left(a-1\right)=b^{15}\left(1-b\right)\Leftrightarrow\dfrac{a-1}{b-1}=\dfrac{b^{15}}{a^{15}}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\dfrac{b^{14}}{a^{14}}=\dfrac{b^{15}}{a^{15}}\Leftrightarrow\dfrac{b^{15}}{a^{15}}-\dfrac{b^{14}}{a^{14}}=0\Leftrightarrow\dfrac{b^{14}}{a^{14}}\left(\dfrac{a}{b}-1\right)=0\Leftrightarrow\dfrac{a}{b}-1=0\)(vì \(\dfrac{a^{14}}{b^{14}}\) là số dương)\(\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\)

Vậy thay vào P=2015a-2016b=2015a-2016a=-a=-b

Vậy P=-a=-b