K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

a) Quy đồng bỏ mẫu rồi giai pt ta đc : \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

b)\(x=1\)

25 tháng 3 2018

Con bai 2 thi sao a

27 tháng 6 2018

\(a^2+b^2-2a\left(b+2\right)=0\Rightarrow a^2-2ab+b^2-4a=0\Rightarrow\left(a-b\right)^2-4a=0\Rightarrow\left(a-b\right)^2=4a\)

\(\Rightarrow a=\frac{\left(a+b\right)^2}{4}=\left(\frac{a+b}{2}\right)^2\)là số chính phương

28 tháng 6 2018

bài này bạn đã đưa lên và   đã có người  giải rồi mà

29 tháng 6 2018

Từ đề bài \(\Rightarrow a^2+b^2-2ab-8a=0\Leftrightarrow\left(a-b\right)^2=8a\)

Hay \(\left(a-b\right)^2=4.2a\)

Vì \(\left(a-b\right)^2;4\)là số chính phương nên \(2a\) là số chính phương chẵn \(\Rightarrow2a=4k^2\left(k\in Z\right)\)

Do đó \(a=2k^2⋮2\) và \(\frac{a}{2}=k^2\) là số chính phương (ĐPCM)

11 tháng 5 2020

gưgeegfewbfdqa

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Với $ab+bc+ac=1$ thì:

$a^2+1=a^2+ab+bc+ac=(a+b)(a+c)$

$b^2+1=b^2+ab+bc+ac=(b+a)(b+c)$

$c^2+1=c^2+ab+bc+ac=(c+a)(c+b)$

$\Rightarrow A=(a^2+1)(b^2+1)(c^2+1)=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$ là scp 

Ta có đpcm.