K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

C = x2 +x +1

C=x2+2.\(\dfrac{1}{2}\) x+\(\dfrac{1}{4}\) +\(\dfrac{3}{4}\)

C=(x2+\(2.\dfrac{1}{2}x+\dfrac{1}{4}\) )+\(\dfrac{3}{4}\)

C=\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)

=>\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=>C≥\(\dfrac{3}{4}\)

Min C =\(\dfrac{3}{4}\) khi

x+\(\dfrac{1}{2}=0\)

=>x=\(-\dfrac{1}{2}\)

14 tháng 8 2023

a) *Xét x=0

==> Giá trị A=2022!(1)

*Xét 0<x≤2022

==> A=0(2)

*Xét x>2022

==> A≥2022!(3)

Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022

Mà để xmax ==> x=2022 

Vậy ...

b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)

Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất

Mà x-2021≠0 =>x-2021=1==>x=2022

Khi đó Bmax=6057

Vậy...

 

24 tháng 11 2016

Có: \(\begin{cases}2.\left|x-3\right|\ge0\\\left(6-3y\right)^4\ge0\end{cases}\forall x;y\)

Do đó, \(2.\left|x-3\right|+\left(6-3y\right)^4-2\ge-2\)

Dấu "=" xảy ra khi \(\begin{cases}2.\left|x-3\right|=0\\\left(6-3y\right)^4=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-3\right|=0\\6-3y=0\end{cases}\)\(\Rightarrow\begin{cases}x-3=0\\6-3y=0\end{cases}\)

\(\Rightarrow\begin{cases}x=3\\3y=6\end{cases}\)\(\Rightarrow\begin{cases}x=3\\y=2\end{cases}\)

Vậy GTNN của 2.|x - 3| + (6 - 3y)4 - 2 là -2 khi x = 3; y = 2

24 tháng 11 2016

Cảm ơn bn nhiều!

25 tháng 4 2016

 hình như là 9x^2+16y^2 chứ nhỉ

áp dụng bđt cối  ta có 3A>= (3x+4y)2=25

26 tháng 4 2018

/ 2x - 18 / lớn hơn hoặc bằng 0 với mọi x

/ 5y + 25 / lớn hơn hoặc bằng 0 với mọi y

=> /2x - 18/ + / 5y + 25 / + 69 lớn hơn hoặc bằng 69

=> biểu thức có giá trị nhỏ nhất là 69 

Khi đó : 

2x - 18 = 0          và             5y + 25 = 0

x = 9                                       y = -5

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

22 tháng 10 2020

đặt y = 1/x suy ra y <=1,

ta có P = 1 -2y+2016y^2 

Tự làm tiếp nhé