Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
MẶC DÙ TA CÓ A>HOẶC =0,,NHƯNG CHƯA THỂ KẾT LUẬN ĐƯỢC MIN CỦA A=0 VÌ KO TỒN TẠI GIÁ TRỊ NÀO CỦA X ĐỂ A=0
\(\Leftrightarrow E=x^2-8x+16+4x^2-4x+1\)
\(\Leftrightarrow E=5x^2-12x+17\)
\(\Leftrightarrow E=5\left(x-\frac{6}{5}\right)^2+\frac{49}{5}\ge\frac{49}{5}\)
vậy GTNN của E=49/5 tại x=6/5
a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4
Dấu bằng xảy ra <=>x+1=0 <=>x=-1
\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)
Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)
Vậy giá trị nhỏ nhất của A là 4 khi x= -1
\(M=x^2-2xy+4y^2+12xy+22\)
\(M=\left(x^2-2xy+y^2\right)+\left(3y^2+12y+12\right)+10\)
\(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=-2\)
( Chỗ \(M=\left(x-y\right)^2+3\left(x+2\right)^2+10\ge10\forall x;y\) bạn phân tích từng cái đã nhá, mình làm tắt )
\(x^2+2xy+y^2\) +\(y^2-4y+4+1\)
=\(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)
dau = xay ra \(\Leftrightarrow y=2\),\(x=-2\)
min M =1 khi x=-2 y=2
Ta có:
\(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+25+\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(Min_C=2\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
C = x2 +x +1
C=x2+2.\(\dfrac{1}{2}\) x+\(\dfrac{1}{4}\) +\(\dfrac{3}{4}\)
C=(x2+\(2.\dfrac{1}{2}x+\dfrac{1}{4}\) )+\(\dfrac{3}{4}\)
C=\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)
=>\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=>C≥\(\dfrac{3}{4}\)
Min C =\(\dfrac{3}{4}\) khi
x+\(\dfrac{1}{2}=0\)
=>x=\(-\dfrac{1}{2}\)