K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ANPM có \(\widehat{MAN}=\widehat{ANP}=\widehat{AMP}=90^0\)

nên ANPM là hình chữ nhật

b: Ta có: ANPM là hình chữ nhật

nên AP cắt NM tại trung điểm của mỗi đường

=>N,I,M thẳng hàng

c: Xét ΔABC có

P là trung điểm của BC

PM//AC

Do đó: M là trung điểm của AB

Xét ΔBCA có

P là trung điểm của BC

PN//AB

Do đó: N là trung điểm của AC

\(S_{AMPN}=AM\cdot AN=\dfrac{1}{4}\cdot AB\cdot AC\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

Do đó: \(S_{ABC}=2\cdot S_{AMPN}\)

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ΔHDB vuông tại D

mà DI là đường trung tuyến

nên \(DI=IH=IB\)

Xét ΔIHD có IH=ID

nên ΔIHD cân tại I

=>\(\widehat{IHD}=\widehat{IDH}\)

mà \(\widehat{IHD}=\widehat{HCA}\)(hai góc đồng vị, HD//AC)

nên \(\widehat{IDH}=\widehat{HCA}\)

ADHE là hình chữ nhật

=>\(\widehat{EAH}=\widehat{EDH}\)

=>\(\widehat{EDH}=\widehat{HAC}\)

\(\widehat{IDE}=\widehat{IDH}+\widehat{EDH}\)

\(=\widehat{HAC}+\widehat{HCA}\)

\(=90^0\)

=>DI\(\)\(\perp\)DE

c: ΔCEH vuông tại E

mà EK là đường trung tuyến

nên EK=KH=KC

Xét ΔKEH có KE=KH

nên ΔKEH cân tại K

=>\(\widehat{KEH}=\widehat{KHE}\)

mà \(\widehat{KHE}=\widehat{CBA}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{KEH}=\widehat{CBA}=\widehat{HBA}\)

ADHE là hình chữ nhật

=>\(\widehat{HAD}=\widehat{HED}\)

=>\(\widehat{HED}=\widehat{HAB}\)

\(\widehat{KED}=\widehat{KEH}+\widehat{DEH}\)

\(=\widehat{HAB}+\widehat{HBA}=90^0\)

=>KE\(\perp\)DE

Ta có: KE\(\perp\)DE

ID\(\perp\)KE

Do đó: ID//KE

Xét tứ giác KEDI có

KE//DI

KE\(\perp\)ED

Do đó: KEDI là hình thang vuông

d: DI=1cm

mà HB=2DI

nên HB=2*1=2=2cm

EK=4cm

mà CH=2EK

nên \(CH=2\cdot4=8cm\)

BC=BH+CH

=2+8

=10cm

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot10=30\left(cm^2\right)\)

27 tháng 12 2021

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{PAN}=90^0\)

Do đó: ANMP là hình chữ nhật

14 tháng 10 2019

a) Xét tứ giác AEMD có :

DÂE = 90° ; Góc ADM = 90° ; Góc AEM = 90°

\(\Rightarrow\)Tứ giác AEMD là hình chữ nhật ( theo định lí )

10 tháng 12 2023

a: Xét tứ giác AEGF có

\(\widehat{AEG}=\widehat{AFG}=\widehat{FAE}=90^0\)

=>AEGF là hình chữ nhật

b: Ta có: GF\(\perp\)AC

AB\(\perp\)AC

Do đó: GF//AB

Ta có: GF//AB

E\(\in\)BA

I\(\in\)FG

Do đó: EB//FI

Xét tứ giác BEIF có

BE//IF

BF//EI

Do đó: BEIF là hình bình hành

c: Xét ΔABC có

G là trung điểm của BC

GE//AC

Do đó: E là trung điểm của AB

=>AE=EB(2)

Xét ΔABC có

G là trung điểm của BC

GF//AB

Do đó: F là trung điểm của AC

Ta có: AEGF là hình chữ nhật

=>AE=GF(1)

Ta có: BEIF là hình bình hành

=>FI=EB(3)

Từ (1),(2),(3) suy ra GF=FI

=>F là trung điểm của GI

Xét tứ giác AGCI có

F là trung điểm chung của AC và GI

=>AGCI là hình bình hành

Hình bình hành AGCI có AC\(\perp\)GI

nên AGCI là hình thoi

18 tháng 10 2023

a) Xét tứ giác ANMK có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{N}=90^o\\\widehat{K}=90^o\end{matrix}\right.\)

=> ANMK là hình chữ nhật

b) Ta có:

\(\widehat{MCA}=\widehat{MAC}=\widehat{NAK}\) mà 2 góc có vị trí đồng vị

=> NK//MC

Mặt khác: MN//KC

=> NMCK là hình bình hành

Ta có: O là trung điểm MK

=> O là trung điểm NC

=> ON=OC

c) 

Vì tứ giác ANMK là hình chữ nhật

=> NM=AK

  tứ giác NMCK là hình bình hành

=> NM=KC

=> \(MN=\dfrac{1}{2}AC\)

\(\Rightarrow EM=AC\)

mà EM//AC

=> AEMC là hình bình hành

Gọi I là trung điểm AM

=> I là trung điểm EC

Vì ANMK là h.c.n

=> I là trung điểm NK

=> AM, NK, EC đồng quy tại I

2 tháng 2 2021

undefined