K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

góc C = 180 - 118 = 620

8 tháng 8 2015

ab=ac

=>tam giác abc cân tại a

=>góc bac=góc bca

mà góc bac=góc dac

=>ad//bc

=> góc d+góc c=180

hay 118+góc c=180

=>góc c=62

21 tháng 10 2023

1:

Xét ΔCHD có \(\widehat{CHD}+\widehat{HCD}+\widehat{HDC}=180^0\)

=>\(\widehat{HCD}+\widehat{HDC}=180^0-110^0=70^0\)

=>\(\dfrac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=70^0\)

=>\(\widehat{ADC}+\widehat{BCD}=140^0\)

Xét tứ giác ABCD có

\(\widehat{ADC}+\widehat{BCD}+\widehat{DAB}+\widehat{ABC}=360^0\)

=>\(\widehat{DAB}+\widehat{ABC}=220^0\)

mà \(\widehat{DAB}-\widehat{ABC}=40^0\)

nên \(\widehat{ABC}=\dfrac{220^0-40^0}{2}=90^0\)

=>BA\(\perp\)BC

2:

Xét tứ giác ABCD có

\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)

=>\(\widehat{BCD}+\widehat{ADC}=360^0-220^0=140^0\)

=>\(2\cdot\left(\widehat{KCD}+\widehat{KDC}\right)=140^0\)

=>\(\widehat{KCD}+\widehat{KDC}=70^0\)

Xét ΔCKD có

\(\widehat{CKD}+\widehat{KCD}+\widehat{KDC}=180^0\)

=>\(\widehat{CKD}=180^0-70^0=110^0\)

25 tháng 10 2015
  1. AC la phan giac cua goc A nen goc BAC +CAD
  2. tam giac ABC can o A nen gocBAC =goc BCA

tu 1va 2 nen Goc CAD =goc BCA nen BC song song AD

nen goc C =1800 _ goc D

nen Goc C=62

16 tháng 7 2023

a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.

Vì AB//CD, ta có góc ACD = góc BAD.

Vậy số đo góc A là 120 độ.

b) Gọi góc BCD là x độ.

Theo giả thiết, góc B phần góc D = 4/5, ta có:

góc B = (4/5) * góc D

= (4/5) * 60

= 48 độ.

Vì AB//CD, ta có góc BCD = góc BAD.

Vậy góc BAD = góc BCD = x độ.

Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.

Ta có: góc A + góc B + góc C + góc D = 360 độ.

Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:

120 + 48 + góc C + 60 = 360

góc C = 360 - 120 - 48 - 60 = 132 độ.

Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.

* Ib = bài 4

30 tháng 6 2021

Giúp em với ạ, huhu

 

a) Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)(Định lí tổng bốn góc trong một tứ giác)

mà \(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)

Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)

Ta có: \(\widehat{B}+\widehat{C}=180^0\)

mà hai góc này là hai góc trong cùng phía

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)

hay ABCD là hình thang