Bài 1
a) 3x + 5y + 8xy = 16
b) x + 3xy - y = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)
\(17x^2+2y^2-x+4y+8xy+21>0\)
\(\Leftrightarrow16x^2+x^2+y^2+y^2-x+4y+8xy+\frac{1}{4}+4+\frac{67}{4}>0\)
\(\Leftrightarrow\left(16x^2+8xy+y^2\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{67}{4}>0\)
\(\Leftrightarrow\left(4x+y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{67}{4}>0\)
Ta thấy : \(\hept{\begin{cases}\left(4x+y\right)^2\ge0\\\left(x-\frac{1}{2}\right)^2\ge\\\left(y-2\right)^2\ge0\end{cases}0}\) \(Và\) \(\frac{67}{4}>0\)\(\Rightarrow dpcm\)
Bài 4:
1: \(\left(x-1\right)\left(x^2+x+1\right)-x^3-6x=11\)
=>\(x^3-1-x^3-6x=11\)
=>-6x-1=11
=>-6x=11+1=12
=>\(x=\dfrac{12}{-6}=-2\)
2: \(16x^2-\left(3x-4\right)^2=0\)
=>\(\left(4x\right)^2-\left(3x-4\right)^2=0\)
=>\(\left(4x-3x+4\right)\left(4x+3x-4\right)=0\)
=>(x+4)(7x-4)=0
=>\(\left[{}\begin{matrix}x+4=0\\7x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{4}{7}\end{matrix}\right.\)
3: \(x^3-x^2-3x+3=0\)
=>\(\left(x^3-x^2\right)-\left(3x-3\right)=0\)
=>\(x^2\left(x-1\right)-3\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-3\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
4: \(\dfrac{x-1}{x+2}=\dfrac{x+2}{x+1}\)(ĐKXĐ: \(x\notin\left\{-2;-1\right\}\))
=>\(\left(x+2\right)^2=\left(x-1\right)\left(x+1\right)\)
=>\(x^2+4x+4=x^2-1\)
=>4x+4=-1
=>4x=-5
=>\(x=-\dfrac{5}{4}\left(nhận\right)\)
5: ĐKXĐ: \(x\notin\left\{0;-1\right\}\)
\(\dfrac{1}{x}+\dfrac{2}{x+1}=0\)
=>\(\dfrac{x+1+2x}{x\left(x+1\right)}=0\)
=>3x+1=0
=>3x=-1
=>\(x=-\dfrac{1}{3}\left(nhận\right)\)
6: ĐKXĐ: \(x\notin\left\{0;3\right\}\)
\(\dfrac{9-x^2}{x}:\left(x-3\right)=1\)
=>\(\dfrac{-\left(x^2-9\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}=1\)
=>\(\dfrac{-x-3}{x}=1\)
=>-x-3=x
=>-2x=3
=>\(x=-\dfrac{3}{2}\left(nhận\right)\)
3x+5y+8xy=16\(\Rightarrow\)24x+40y+64xy=128\(\Rightarrow\)(24x+64xy)+(40y+15)=128+15\(\Rightarrow\)8x(3+8y)+5(8y+3)=143\(\Rightarrow\)(8y+3)(8x+5)=143
Với x,y nguyên thì 8y+3,8x+5 chia 8 du 3 ,5 mà 143=1.143=(-1)(-143)=11.13=(-11)(-13) ta có 2 th:
+ 8y+3=11và 8x+5=13\(\Rightarrow\)y=1 và x=1
+ 8y+3=-13và 8x+5=-11\(\Rightarrow\)y=-2 và x=-2
P(x)+Q(x)
=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5
=8xy^2-14y^2-6x^2y-3x-5
=>Chọn A
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a)
3x+5y+8xy=16⇒⇒24x+40y+64xy=128⇒⇒(24x+64xy)+(40y+15)=128+15⇒⇒8x(3+8y)+5(8y+3)=143⇒⇒(8y+3)(8x+5)=143
Với x,y nguyên thì 8y+3,8x+5 chia 8 du 3 ,5 mà 143=1.143=(-1)(-143)=11.13=(-11)(-13) ta có 2 th:
+ 8y+3=11và 8x+5=13⇒⇒y=1 và x=1
+ 8y+3=-13và 8x+5=-11⇒⇒y=-2 và x=-2
b)
Giải
Ta có :x−3yy=12⇔x−3y=12y⇔x=15y(1)x−3yy=12⇔x−3y=12y⇔x=15y(1)
M=5x−3y2y5x−3y2y. Thay (1) vào biểu thức trên ta được:
M=75y−3y2y⇔72y2yM=75y−3y2y⇔72y2y
⇒M=36⇒M=36
Vậy biểu thức có giá trị là 36
Tính x,y Biết x,y thuộc Z nha