K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

5 tháng 11 2016

a ) Khi \(a=b=c\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(3a^2\right)^2-6a^4}=\frac{1}{4}\sqrt{3a^4}\)

\(\Rightarrow S=\frac{a^2\sqrt{3}}{4}\)

Vậy diện tích tam giác đều cạnh a là \(S=\frac{a^2\sqrt{3}}{4}.\)

b ) Khi \(a^2=b^2+c^2\)

\(\Rightarrow S=\frac{1}{4}\sqrt{\left(2a^2\right)^2-2\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow S=\frac{1}{4}\sqrt{2\left(a^4-b^4-c^4\right)}\)

Từ \(b^2+c^2=a^2\)

\(\Rightarrow b^4+c^4+2b^2c^2=a^4,\)ta tính ra :

\(S=\frac{1}{4}\sqrt{4b^2c^2}\) \(\Rightarrow S=\frac{2}{4}b.c\) \(\Rightarrow S=\frac{1}{2}bc\)

Vậy diện tích tam giác vuông thì bằng \(\frac{1}{2}\) tích 2 cạnh góc vuông .

 

6 tháng 11 2018

Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo bài làm ở link này nhé!

24 tháng 10 2017

Áp dụng bđt AM - GM, ta có:

\(4\sqrt{3}S=4\sqrt{3}\times\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(=4\sqrt{3}\times\dfrac{\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}{4}\)

\(\le\sqrt{3\left(a+b+c\right)}\times\sqrt{\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}}\)

\(=\dfrac{\left(a+b+c\right)^2}{3}\)

\(=\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{3}\)

\(=\dfrac{3\left(a^2+b^2+c^2\right)-\left(a^2-2ab+b^2\right)-\left(a^2-2ac+c^2\right)-\left(b^2-2bc+c^2\right)}{3}\)

\(=a^2+b^2+c^2-\dfrac{\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2}{3}\)

Dấu "=" xảy ra khi a = b = c (\(\Delta ABC\) đều)

Làm linh tinh đấy -.- hổng chắc đâu Ọ v Ọ

29 tháng 10 2017

Còn một cách rất pá đạo nữa , không hiểu nổi lấy ý tưởng từ đâu luôn:

CM:\(a^2+b^2+c^2\ge4\sqrt{3}S\)

\(\Leftrightarrow a^2+b^2+c^2-4\sqrt{3}S\ge0\)

\(\Leftrightarrow a^2+b^2+a^2+b^2-2ab.\cos C-4\sqrt{3}.\dfrac{1}{2}.ab.\sin C\ge0\)( định lý cos + CT diện tích)

\(\Leftrightarrow2\left(a^2+b^2-2ab\right)+4ab-4ab.\dfrac{1}{2}.\cos C-4ab.\dfrac{\sqrt{3}}{2}.\sin C\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left(1-\cos\dfrac{\pi}{3}.\cos C-\sin\dfrac{\pi}{3}.\sin C\right)\ge0\)

( \(\cos\dfrac{\pi}{3}=\cos60=\dfrac{1}{2}\);\(\sin\dfrac{\pi}{3}=\sin60=\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow2\left(a-b\right)^2+4ab\left[1-\cos\left(\dfrac{\pi}{3}-C\right)\right]\ge0\)( luôn đúng vì \(-1\le\cos\alpha\le1\))

( \(\cos\left(x-y\right)=\cos x\cos y+\sin x\sin y\))

5 tháng 11 2019

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

7 tháng 11 2019

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều

15 tháng 1 2021

Bất đẳng thức cần cm tương đương:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b+c\right)^3}{27}\).

Mặt khác theo bđt AM - GM (Chú ý a, b, c là độ dài 3 cạnh của tam giác nên a + b - c > 0; b + c - a > 0; c + a - b > 0) ta có:

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le\dfrac{\left(a+b-c+b+c-a+c+a-b\right)^3}{27}=\dfrac{\left(a+b+c\right)^3}{27}\).

Vậy ta có đpcm.

15 tháng 1 2021

mk ko hiểu. bạn gthik rõ ra đc koSigma CTV