Chứng minh rằng n4+7(7+2n2) chia hết cho 64 với n là số nguyên lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n4 + 7( 7 + 2n2 )
= n4 + 14n2 + 49
= ( n2 + 7 )2
Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )
Thế vô ta được :
[ ( 2k + 1 )2 + 7 ]2
= ( 4k2 + 4k + 1 + 7 )2
= ( 4k2 + 4k + 8 )2
= [ 4( k2 + k + 2 ) ]2
= { 4[ k( k + 1 ) + 2 ] }2
Ta có : k( k + 1 ) chia hết cho 2
2 chia hết cho 2
=> k( k + 1 ) + 2 chia hết cho 2
=> 4[ k( k + 1 ) + 2 ] chia hết cho 8
=> { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64
=> đpcm
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
Thực hiện nhân đa thức và thu gọn
2 n 2 (n + 1) – 2n( n 2 + n – 3) = 6 n ⋮ 6 với mọi giá trị nguyên n.
\(n^4+7\left(7+2n^2\right)\)
\(=n^4+14n^2+49\)
\(=\left(n^2\right)^2+2.7.n^2+7^2\)
\(=\left(n^2+7\right)^2\)
Vì n là số nguyên nẻ nên n có dạng 2k + 1 với k là số nguyên
\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)
\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)
\(=\left[4k\left(k+1\right)+8\right]^2\)
Ta thấy \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)
\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)
\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮64\forall k\in Z\)
Hay \(n^4+7\left(7+2n^2\right)⋮64\forall n\)là số nguyên lae (đpcm)