K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 9 2021

\(cos^2x-sin^2x-2\sqrt{3}sinxcosx=1\)

\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\)

\(\Leftrightarrow\frac{1}{2}cos2x-\frac{\sqrt{3}}{2}sin2x=\frac{1}{2}\)

\(\Leftrightarrow cos\left(\frac{\pi}{3}\right)cos2x-sin\left(\frac{\pi}{3}\right)sin2x=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\)

\(\Leftrightarrow2x+\frac{\pi}{3}=\pm\frac{\pi}{3}+k2\pi\left(k\inℤ\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=k\pi\\x=\frac{-\pi}{3}+k\pi\end{cases}}\left(k\inℤ\right)\)

NM
2 tháng 9 2021

\(cos^2x-sin^2x-2\sqrt{3}sinx.cosx=1\)

\(\Leftrightarrow cos2x-\sqrt{3}sin2x=1\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)=cos\left(\frac{\pi}{3}\right)\Leftrightarrow2x+\frac{\pi}{3}=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow\orbr{\begin{cases}x=k\pi\\x=-\frac{\pi}{3}+k\pi\end{cases}}\)

3 tháng 7 2017

thông cảm vì mk mới hc lp 7

viết lại đi mk giúp

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

NV
8 tháng 8 2020

6.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-3sin^2x.cos^2x+\frac{1}{2}sinx.cosx=0\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x+\frac{1}{4}sin2x=0\)

\(\Leftrightarrow-3sin^22x+sin2x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=-1\\sin2x=\frac{4}{3}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2x=-\frac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\frac{\pi}{4}+k\pi\)

NV
8 tháng 8 2020

5.

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\frac{5}{6}\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(\Leftrightarrow1-3sin^2x.cos^2x=\frac{5}{6}\left(1-2sin^2x.cos^2x\right)\)

\(\Leftrightarrow1-\frac{3}{4}sin^22x=\frac{5}{6}\left(1-\frac{1}{2}sin^22x\right)\)

\(\Leftrightarrow\frac{1}{3}sin^22x=\frac{1}{6}\)

\(\Leftrightarrow sin^22x=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=\frac{\sqrt{2}}{2}\\sin2x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+k\pi\\x=\frac{3\pi}{8}+k\pi\\x=-\frac{\pi}{8}+k\pi\\x=\frac{5\pi}{8}+k\pi\end{matrix}\right.\)

Vd1: 

d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)

\(\Leftrightarrow x=6\)

28 tháng 7 2018

ta có : \(\dfrac{sin^2x-cos^2x}{sinx.cosx}=\dfrac{\dfrac{sin^2x}{cos^2x}-\dfrac{cos^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}}\) \(=\dfrac{tan^2x-1}{tanx}=\dfrac{\left(\sqrt{3}\right)^2-1}{\sqrt{3}}=\dfrac{2}{\sqrt{3}}\)

NV
18 tháng 8 2020

d/ ĐKXĐ: ...

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cos^2x+sin^2x+sinx.cosx\right)}{2cosx+3sinx}=cos^2x-sin^2x\)

\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(1+sinx.cosx\right)}{2cosx+3sinx}=\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\\\frac{1+sinx.cosx}{2cosx+3sinx}=sinx+cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1+sinx.cosx=\left(sinx+cosx\right)\left(2cosx+3sinx\right)\)

\(\Leftrightarrow1+sinx.cosx=2sin^2x+3cos^2x+5sinx.cosx\)

\(\Leftrightarrow2sin^2x+3cos^2x+4sinx.cosx-1=0\)

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)

\(2tan^2x+3+4tanx-1-tan^2x=0\)

\(\Leftrightarrow tan^2x+4tanx+2=0\)

\(\Leftrightarrow tanx=-2\pm\sqrt{2}\)

\(\Rightarrow x=arctan\left(-2\pm\sqrt{2}\right)+k\pi\)

NV
18 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx\right)=4\left(sinx-cosx\right)\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+4cosx-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\sinx+4cosx-4=0\left(2\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=0\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Xét (2) \(\Leftrightarrow\frac{1}{\sqrt{17}}sinx+\frac{4}{\sqrt{17}}cosx=\frac{4}{\sqrt{17}}\)

Đặt \(\frac{4}{\sqrt{17}}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cosx.cosa+sinx.sina=cosa\)

\(\Leftrightarrow cos\left(x-a\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}x-a=a+k2\pi\\x-a=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2a+k2\pi\\x=k2\pi\end{matrix}\right.\)

\(E=\dfrac{\left(cosx-siny\right)\left(cosx+siny\right)}{sin^2x\cdot sin^2y}-\dfrac{cos^2x}{sin^2x}\cdot\dfrac{cos^2y}{sin^2y}\)

\(=\dfrac{cos^2x\left(1-cos^2y\right)-sin^2y}{sin^2x\cdot sin^2y}\)

\(=\dfrac{sin^2y\left(cos^2x-1\right)}{sin^2x\cdot sin^2y}=-1\)

10 tháng 7 2020

Trả lời 

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)

\(\Leftrightarrow x+1+x+2=3\)

\(\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy \(x=0\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\Leftrightarrow x=0\)