K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

Đặt k        

22 tháng 4 2018

a, ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}\)

áp dụng tính chất dă y tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{2b}{2d}=\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{2a-b}{2c-d}\Rightarrow\dfrac{a+2b}{2a-b}=\dfrac{c+2d}{2c-d}\) (ĐPCM)

22 tháng 4 2018

b, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}\)

áp dụng tính chất dă tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\dfrac{a+3c}{b+3d}=\dfrac{a-c}{b-d}\)

\(\Rightarrow\left(a+3c\right)\left(b-d\right)=\left(b+3d\right)\left(a-c\right)\) (ĐPCM)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

27 tháng 8 2023

thank you

 

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k$

$\Rightarrow a=bk, c=dk$

Khi đó:

$\frac{2a+3b}{3a-5b}=\frac{2bk+3b}{3bk-5b}=\frac{b(2k+3)}{b(3k-5)}=\frac{2k+3}{3k-5}(1)$

$\frac{2c+3d}{3c-5d}=\frac{2dk+3d}{3dk-5d}=\frac{d(2k+3)}{d(3k-5)}=\frac{2k+3}{3k-5}(2)$

Từ $(1); (2)$ ta có đpcm.

29 tháng 9 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó : \(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

\(\frac{a-3c}{b-3d}=\frac{bk-3dk}{b-3d}=\frac{k\left(b-3d\right)}{b-3d}=k\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-3c}{b-3d}\left(\text{đpcm}\right)\)