Cho đa thức f(x) = x10+ax3+b
g(x)=x2-x
Tìm a,b để f(x) ⋮ g(x) và còn dư là 2x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đa thức chia có bậc 2
nên đa thức dư là nhị thức bậc nhất
Đặt đa thức dư là \(ax+b\)
Đa thức thương là \(Q_{\left(x\right)}\)
\(\Rightarrow x+x^5+x^{10}+x^{20}=\left(x^2-1\right)Q_{\left(x\right)}+ax+b\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)Q_{\left(x\right)}+ax+b\)
Đẳng thức trên luôn đúng \(\forall x\)
nên lần lượt cho \(x=1;x=-1\)
\(\text{Ta được : }\left\{{}\begin{matrix}a+b=4\\b-a=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{4-0}{2}\\b=\dfrac{4+0}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\)
\(\Rightarrow ax+b=2x+2\)
Vậy số dư trong phép chia \(f_{\left(x\right)};g_{\left(x\right)}\)
là \(2x+2\)
Cho g( x ) = 0
\(\Leftrightarrow\)( x - 2 )( x - 3 ) = 0
\(\Leftrightarrow\)x = 2 hoặc x = 3
f( 2 ) = 2 . 23 - 3 . a . 22 + 2 . 2 + b = 20 - 12a + b ( 1 )
f( 3 ) = 2 . 33 - 3 . a . 32 + 2 . 3 + b = 48 - 27a + b ( 2 )
Lấy ( 1 ) và ( 2 ) ta có :
- 28 + 15a = 0
\(\Rightarrow\)15a = 28
\(\Rightarrow\)a = 28 / 15
\(\Rightarrow\)b = 12 / 5
`a)f(x)+g(x)`
`=x^2+3x-5+x^2+2x+3`
`=(x^2+x^2)+(3x+2x)+(3-5)`
`=2x^2+5x-2`
`b)f(x)-g(x)`
`=x^2+3x-5-(x^2+2x+3)`
`=(x^2-x^2)+(3x-2x)-(3+5)`
`=x-8`
Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được
\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)
Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).
a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).
b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).
Nguyễn Nam Ribi Nkok Ngok Nguyễn Phương Trâm Trần Ngọc Bích
Tương tự: Câu hỏi của Bùi Thị Thu Hồng - Toán lớp 8 | Học trực tuyến