cho hàm số y= f(x)=\(\dfrac{1}{2}x\)
a, tính f(x0;f(-6);f(\(1\dfrac{3}{4}\) )
b, xác định các cặp số (x;y)tương ứng vừa tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Tại $x_0=\sqrt{5}$ thì:
$y=f(x_0)=\frac{x_0}{2}-\sqrt{x_0^2-1}+2$
$=\frac{\sqrt{5}}{2}-\sqrt{5-1}+2=\frac{\sqrt{5}}{2}$
b. Tại $x=\frac{1}{4}$ thì $x^2-1=\frac{-15}{16}< 0$ nên căn thức $\sqrt{x^2-1}$ không xác định. Do đó không tính được.
a: \(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^2+\dfrac{1}{2}-2=\dfrac{1}{4}+\dfrac{1}{2}-2=\dfrac{3}{8}-2=\dfrac{3-16}{8}=-\dfrac{13}{8}\)
b: \(f\left(\sqrt{3}\right)=\dfrac{2\sqrt{3}}{\left(\sqrt{3}\right)^2+1}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
1,Thay x = 1 vào biểu thức ta có
f = 4 x 12 -5
f = -1
2, Đặt f(x) = -1, ta có:
4 x x2 - 5 = -1
4 x x2 = 4
x2 = 4 : 4
x2 = 1
x2=12
=> x = 1 hoặc = -1
Vậy để f(x)=1 thì x ϵ {-1;1}
Đặt
Suy ra g(x) xác định trên ( a ; b ) \ x 0 và
Mặt khác, f ( x ) = f ( x 0 ) + L ( x − x 0 ) + ( x − x 0 ) g ( x ) nên
Vậy hàm số y = f(x) liên tục tại
c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị
Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ), x 0 ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.
Đáp án: D
a: f(0)=0
f(-6)=-3
f(7/4)=7/8
b: \(\left(x,y\right)\in\left\{\left(0;0\right);\left(-6;-3\right);\left(\dfrac{7}{4};\dfrac{7}{8}\right)\right\}\)