help me
x^2 - 5x+6 < ( 2-x) log\(^x_2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{2}{\left(x-2\right)\left(x-3\right)}-\dfrac{2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x+6-2x+4}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\dfrac{10}{\left(x-2\right)\left(x-3\right)\left(x+3\right)}\)
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
bài 1 mk o bt lm ; nên mk lm câu 2 thôi nha .
bài 2) ta có : \(\log_x\left(x-\dfrac{1}{4}\right)\ge2\Leftrightarrow x-\dfrac{1}{4}\ge x^2\Leftrightarrow x^2-x+\dfrac{1}{4}\le0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\le0\)
mà ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow0\le\left(x-\dfrac{1}{2}\right)^2\le0\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\) \(\Leftrightarrow x=\dfrac{1}{2}\)
vậy \(x=\dfrac{1}{2}\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
Bạn xem lại đề xem cố sai sót gì ko rồi comment vào "Trả lời" nhé.
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
bạn ơi mình hỏi tí, sao log\(^{\left(x+4\right)}_2=2log^{\left(x+4\right)}_4\)
Bạn sử dụng công cụ gõ công thức có sẵn này ở chỗ khoanh đỏ viết lại đề được không, sử dụng rất đơn giản
Chứ đề thế này không thể dịch nổi
1) x3 + 5x2 + 3x - 9
= x3 + 2x2 + 3x2 + 6x - 3x - 9
= ( x3 + 2x2 ) + (3x2 + 6x ) - ( 3x + 9 )
= x2 ( x+ 2 ) + 3x ( x + 2) - 3( x +2 )
= ( x + 2 ) ( x2 + 3x -3 )
2) x3 + 5x2 + 8x + 4
= ( x3 + x2 ) + ( 4x2 + 4x ) + ( 4x + 4 )
= x2 ( x + 1 ) + 4x ( x + 1 ) + 4 ( x + 1 )
= ( x + 1) ( x2 + 4x + 4 )
= (x + 1 ) ( x + 2 )2
3) x3 - 9x2 + 6x + 16
= x3 - 8x2 - x2 + 8x - 2x + 16
= ( x3 - 8x2 ) - ( x2 - 8x ) - ( 2x - 16 )
= x2 ( x - 8 ) - x ( x - 8 ) - 2 ( x - 8 )
= ( x - 8 ) ( x2 - x - 2 )
4) x3 - 4x2 + x + 6
= x3 - 3x2 - x2 + 3x - 2x + 6
= ( x3 - 3x2 ) - ( x2 - 3x ) - ( 2x - 6)
= x2 ( x - 3 ) - x ( x- 3 ) - 2 ( x - 3)
= ( x - 3 ) ( x2 - x - 2 )
ta có : \(\left(2-x\right)\log_2x>x^2-5x+6\) \(\left(đk:x>0\right)\)
\(\Leftrightarrow\left(2-x\right)\log_2x>\left(2-x\right)\left(3-x\right)\) (1)
th1) \(x< 2\) \(\left(1\right)\Leftrightarrow\log_2x>3-x\Leftrightarrow x>2^{3-x}>2^{3+2}\Leftrightarrow x>32\left(loại\right)\)
th2) \(x>2\) \(\left(1\right)\Leftrightarrow\log_2x< 3-x\Leftrightarrow x< 2^{3-x}< 2^{3+2}\Leftrightarrow x< 32\)
kết hợp điều kiện ta có \(2< x< 32\)
vậy \(2< x< 32\) .