Chứng minh P, Q tối giản với mọi n thuộc Z:
P=\(\dfrac{2n+1}{2n^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi d là ước chung lớn nhất của 2n+1 và 2n+3
Khi đó \(2n+1⋮d\)và \(2n+3⋮d\)
Do đó \(2n+3-2n-1⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Mặc khác \(2n+1\)không chia hết cho 2 nên d = 1
Do đó \(ƯCLN\left(2n+1;2n+3\right)=1\)
Khi đó phân số \(\frac{2n+1}{2n+3}\)tối giản
Để phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản thì (n + 1, 2n + 3) = 1
Đặt (n + 1, 2n + 3) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(n+1\right)⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\) (2n +3) - (2n + 2) \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d
\(\Rightarrow\) d = 1
\(\Rightarrow\) (n + 1, 2n + 3) = 1
Vậy phân số \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
Gọi d \(\in\) ƯC(n + 1; 2n + 3)
Ta có: n + 1 \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) 2(n + 1) \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) 2n + 2 \(⋮\) d và 2n + 3 \(⋮\) d
\(\Rightarrow\) (2n + 2) - (2n + 3) \(⋮\) d
\(\Rightarrow\) -1 \(⋮\) d
\(\Rightarrow\) d = \(\pm\) 1
Vậy: d = \(\pm\) 1