K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Ta có: \(\dfrac{a+b}{2ab}\ge\dfrac{2}{a+b}\)

\(\sqrt{\dfrac{a+b}{2ab}}\ge\sqrt{\dfrac{2}{a+b}}\)

Tương tự cho 2 hạng tử còn lại , cộng vế theo vế, ta được:

\(P\ge\sqrt{2}\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

Sử dụng Cauchy-Schwarz dạng Engel và Bunyakovsky,ta có:

\(P\ge\sqrt{2}\left(\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

\(P\ge\sqrt{2}\left(\dfrac{9}{\sqrt{2\left(a+b+c\right).3}}\right)=\sqrt{2}\left(\dfrac{9}{\sqrt{2.3.3}}\right)=3\)

GTNN của P là 3 khi a=b=c=1

24 tháng 11 2021

\(1,\text{Áp dụng Mincopxki: }\\ Q\ge\sqrt{\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2}\ge\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\\ \text{Dấu }"="\Leftrightarrow a=b\)

24 tháng 11 2021

\(2,\text{Áp dụng BĐT Cauchy-Schwarz: }\\ P\ge\dfrac{9}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}\ge\dfrac{9}{1}=9\\ \text{Dấu }"="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

NV
27 tháng 12 2020

\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)

\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
16 tháng 4 2022

\(A=\sqrt{2b\left(a+1\right)}+\sqrt{2c\left(b+1\right)}+\sqrt{2a\left(c+1\right)}\)

\(A=\dfrac{1}{2\sqrt{2}}.2\sqrt{4b\left(a+1\right)}+\dfrac{1}{2\sqrt{2}}.2\sqrt{4c\left(b+1\right)}+\dfrac{1}{2\sqrt{2}}.2\sqrt{4a\left(c+1\right)}\)

\(A\le\dfrac{1}{2\sqrt{2}}\left(4b+a+1\right)+\dfrac{1}{2\sqrt{2}}\left(4c+b+1\right)+\dfrac{1}{2\sqrt{2}}\left(4a+c+1\right)\)

\(A\le\dfrac{1}{2\sqrt{2}}\left[5\left(a+b+c\right)+3\right]=2\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

9 tháng 8

P=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a^2+\left(b+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(b^2+\left(a+c\right)^2\right)\left(1+1\right)}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(c^2+\left(b+a\right)^2\right)\left(1+1\right)}}\)>=\(\dfrac{\sqrt{2}.a}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.b}{\sqrt{\left(a+b+c\right)^2}}+\dfrac{\sqrt{2}.c}{\sqrt{\left(a+b+c\right)^2}}\)>=\(\sqrt{2}\)

9 tháng 8

nhầm dấu tí là dấu lớn hơn bằng còn cách lm thì đúng nhé