K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

chứng minh bằng phương pháp quy nap nhá bạn

16 tháng 8 2016

Viết lại đẳng thức cần cm 
\(1^3+2^3+..+n^3=\left(1+2+..+n\right)^2\)(*)
với n =1 thì \(1^3=1^2\)(ĐÚNG )
với n=2 thì \(1^3+2^3=9=3^2\)(ĐÚNG)

Giả sử (*) đúng với \(n=k\left(k\in N,k\ne0\right)\Leftrightarrow1^3+2^3+..+k^3=\left(1+2+..+k\right)^2\)
Ta đi chứng minh (*) đúng với n=k+1
Thạt vậy \(1^3+2^3+..+k^3+\left(k+1\right)^3=\left(1+..+k\right)^2+\left(k+1\right)^3\)
\(=\left(1+..+k\right)^2+\left(k+1\right)\left(k+1\right)^2=\left(1+..+k\right)^2+k\left(k+1\right)^2+\left(k+1\right)^2\)
\(=\left(1+..+k\right)^2+2\left(k+1\right)\left(1+..+k\right)+\left(k+1\right)^2=\left(1+..+k+k+1\right)^2\)(dpcm )

5 tháng 8 2016

chtt là đc ý đầu 
ý sau thì dùng nhị neww

5 tháng 8 2016

chtt là j bác

14 tháng 7 2018

n là số nguyên dương

Bình phương hai vế, ta được:

\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)

\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)

Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)

Mà 2n + 3 > 2n + 1

 \(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)

=> ( √n+2 -  √n+1)^2 > ( √n-1 -  √n)^2

=>  √n+2 -  √n+1 >  √n-1 -  √n

P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn

14 tháng 7 2018

Hình như sai b ạ

15 tháng 5 2017

cần gấp ko bn 

15 tháng 5 2017

có bạn. mai mk faj nộp r

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

2 tháng 11 2015

n2 + 6n = n(n + 6) chia hết n

Mà n2 + 6n phải là số nguyên tố => n = 1

Thử lại: n(n + 6) = 7 nguyên tố

Vậy n = 1

30 tháng 11 2016

Bài này trên gg có

13 tháng 5 2023

Ta có: \sqrt[{k + 1}]{{\frac{{k + 1}}{k}}} > 1,\left( {k = \overline {1,n} } \right)

Áp dụng bất đẳng thức Cauchy cho k + 1 số ta có: 

\begin{matrix}
 \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} = \sqrt[{k + 1}]{{\dfrac{{1 + 1 + .... + 1}}{k}\dfrac{{k + 1}}{k}}} < \dfrac{{1 + 1 + ... + 1 + \dfrac{{k + 1}}{k}}}{{k + 1}} = \dfrac{k}{{k + 1}} + \dfrac{1}{k} = 1 + \dfrac{1}{{k\left( {k + 1} \right)}} \hfill \\
 \Rightarrow 1 < \sqrt[{k + 1}]{{\dfrac{{k + 1}}{k}}} < 1 + \left( {\dfrac{1}{k} - \dfrac{1}{{k + 1}}} \right) \hfill \\ 
\end{matrix}

Lần lượt cho k = 1, 2, 3, ... rồi cộng lại ta được 

n < \sqrt 2 + \sqrt[3]{{\frac{3}{2}}} + ... + \sqrt[{n + 1}]{{\frac{{n + 1}}{n}}} < n + 1 - \frac{1}{n} < n + 1 
 \Rightarrow \left| \alpha \right| = n