Rút gọn A = \(\sqrt{1+1999^2+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2000 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
\(=\sqrt{\frac{a^4-2a^3+3a^2-2a+1}{a^2}}+\frac{a-1}{a}\)
\(=\frac{a^2-a+1}{a}+\frac{a-1}{a}=a=2000\)
Với số nguyên dương n, ta có:
\(1+n^2+\left(\frac{n}{n+1}\right)^2=\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}=\frac{n^2+2n+1+n^2+n^2\left(n+1\right)^2}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{\left(n+1\right)^2}=\frac{\left[n\left(n+1\right)+1\right]^2}{\left(n+1\right)^2}=\left(\frac{n^2+n+1}{n+1}\right)^2\)
\(\Rightarrow\sqrt{1+n^2+\left(\frac{n}{n+1}\right)^2}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
\(\Rightarrow P=\left(1999+\frac{1}{2000}\right)+\frac{1999}{2000}=1999+1=2000\)
Cách ez hđt lp 8 nhé
\(P=\sqrt{\left(1+2.1999+1999^2\right)-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(1+1999\right)^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{2000^2-2.1999+\frac{1999^2}{2000^2}}+\frac{1999}{2000}\)
\(P=\sqrt{\left(2000-\frac{1999}{2000}\right)^2}+\frac{1999}{2000}\)
\(P=\left|2000-\frac{1999}{2000}\right|+\frac{1999}{2000}=2000-\frac{1999}{2000}+\frac{1999}{2000}=2000\)
...
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+...+\frac{1}{2000}+2000}{1+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}}\)
\(=\frac{\left[\frac{2001}{1}+1\right]+\left[\frac{2001}{2}+1\right]+...+\left[\frac{2001}{2000}+1\right]+2001}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}\)
\(=\frac{2001\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}\right]}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2000}}=2001\)
Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )
\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)
\(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)
Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ
Vậy A là số hữu tỉ