Phân tích đa thức sau thành nhân tử : x2(x + 4)2 – (x + 4)2 – (x2 – 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2+4x^2+4x-12=\left[\left(x^2+x\right)^2+4\left(x^2+x\right)+4\right]-16=\left(x^2+x+2\right)-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
\(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x+2\right)-4\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
(1 + x2)2 - 4x(1 - x2)
= (1 + x2)(1 + x2) - 4x(1 - x2)
= (1 + x2 - 4x)(1 + x2 - 1 + x2)
= 2x2(x2 - 4x + 1)
Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)
\(=x^4+2x^2+1+4x^3-4x\)
\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)
\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)
\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(\left(x^2+6x-1\right)^2+2x^2+x^4+2\left(x^2+6x-1\right)\left(x^2+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^2+1\right)^2-1=\left(x^2+6x-1+x^2+1\right)^2-1=\left(2x^2+6x\right)^2-1=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
\(\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(x^2+6x-1+2x^2+2\right)+x^4+2x^2\)
\(=\left(x^2+6x-1\right)\left(3x^2+6x+1\right)+x^4+2x^2\)
\(=\left(2x^2+6x-1\right)\left(2x^2+6x+1\right)\)
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\\ =4\left(x+5\right)\left(x+10\right)\left(x+6\right)\left(x+12\right)-3x^2\\ =4\left(x^2+16x+60\right)\left(x^2+17x+60\right)-3x^2\)
Đặt \(x^2+16x+60=a\)
\(=4a\left(a+x\right)-3x^2\\ =4a^2+4ax-3x^2\\ =\left(2a-x\right)\left(2a+3x\right)\\ =\left[2\left(x^2+16x+60\right)-x\right]\left[2\left(x^2+16x+60\right)+3x\right]\\ =\left(2x^2+31x+120\right)\left(2x^2+35x+120\right)\)
(x2+15x+50)(x2+18x+72)−3x2=4(x+5)(x+10)(x+6)(x+12)−3x2=4(x2+16x+60)(x2+17x+60)−3x24(�2+15�+50)(�2+18�+72)−3�2=4(�+5)(�+10)(�+6)(�+12)−3�2=4(�2+16�+60)(�2+17�+60)−3�2
Đặt x2+16x+60=a�2+16�+60=�
=4a(a+x)−3x2=4a2+4ax−3x2=(2a−x)(2a+3x)=[2(x2+16x+60)−x][2(x2+16x+60)+3x]=(2x2+31x+120)(2x2+35x+120)
\(x^2-x-2020.2021=x^2+2020x-2021x-2020.2021=x\left(x+2020\right)-2021\left(x+2020\right)=\left(x+2020\right)\left(x-2021\right)\)
\(x^2-x-2020\cdot2021\)
\(=\left(x-2021\right)\left(x+2020\right)\)
a)\(5x^2-4\left(x^2-2x+1\right)-5=5\left(x^2-1\right)-4\left(x-1\right)^2=5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=\left(x-1\right)\left(5x+5-4x+4\right)=\left(x-1\right)\left(x+9\right)\)
b) \(9x^2+6x-4y^2+4y=\left(9x^2+6x+1\right)-\left(4y^2-4y+1\right)=\left(3x+1\right)^2-\left(2y-1\right)^2=\left(3x+1-2y+1\right)\left(3x+1+2y-1\right)=\left(3x-2y+2\right)\left(3x+2y\right)\)
a: \(5x^2-4\left(x^2-2x+1\right)-5\)
\(=5x^2-4x^2+8x-4-5\)
\(=x^2+8x-9\)
\(=\left(x+9\right)\left(x-1\right)\)
b: \(9x^2+6x-4y^2+4y\)
\(=\left(3x+2y\right)\left(3x-2y\right)+2\left(3x+2y\right)\)
\(=\left(3x+2y\right)\left(3x-2y+2\right)\)
\(\left(x^2-3x\right)^2-14x^2+42x+40\\ =\left(x^2-3x-7\right)^2-9\\ =\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(\left(x^2-5x\right)^2-3x^2+15x-18\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+3\right)\)
\(=\left(x^2-5x+3\right)\left(x-6\right)\left(x+1\right)\)
\(=\left(x^2-5x\right)^2-3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)^2-6\left(x^2-5x\right)+3\left(x^2-5x\right)-18\\ =\left(x^2-5x\right)\left(x^2-5x-6\right)+3\left(x^2-5x-6\right)\\ =\left(x^2-5x+3\right)\left(x^2-5x-6\right)\\ =\left(x-6\right)\left(x+1\right)\left(x^2-5x+3\right)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)
\(=(x+4-1)(x+4+1)(x-1)(x+1)\)
\(=(x+3)(x+5)(x-1)(x+1)\)