K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Kẻ đường cao AH. Ta tính được BH = 16. Theo Py-ta-go: AH = \(16\sqrt{3}\)   => CH = 16 => BC = 32

24 tháng 10 2015

BC=20 kẻ đường cao AH là đc

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

24 tháng 8 2016

1.Toán lớp 9

Kẻ đường cao CH

Xét tam giác vuông HCB,ta có:

góc B +    góc C=90

  60  +    góc C=90     

=> góc C= 30=> góc C=10

Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:

    HB= BC x cot góc B = 9 x cot 60= 33 (cm)

=>HC=BC- HB=9- (3√3)= 3√6 (cm) (Đinh lí Py-ta-go)

    AH= HC x tan góc C= 3√6 x tan 10=1,3 (cm)

Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)

AC = AH : sin góc C2 = 7,49 (cm)

Vậy  AB = 6,49 cm ; AC = 7,49 cm

2.Toán lớp 9

Kẻ đường cao AH.

Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:

BH = AB x cos góc B = 3,2 x cos 70= 1,09 (cm)

AH= BH x tan góc B =1,09 x tan 70= 2,99 (cm)

Ta có : BC  -  BH  = HC

  => HC =  6,2  - 2,99 = 3,21 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:

      AC2 AH+HC = (2,99)+(3,21)2  =>AC= 4,39 (cm)

Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha thanghoa

 

 

 

 

 

 

 

 

3 tháng 9 2016

Tam giác ABC vuông tại A, B=60.

⇒ Tam giác ABC là 1 nửa tam giác đều

⇒AB = \(\frac{BC}{2}\) =4cm.

 AC=12‐4=8cm

Vậy AB=4cm

       AC=8cm

3 tháng 9 2016

 

A B C 2x 60* H

Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)

Áp dụng định lí Pi-ta-go có:

\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)

Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)

Giải phương trình có x = 2,5

\(\Rightarrow AB=2x=2.2,5=5cm\)

Thay số vào tính được AC =))

9 tháng 11 2023

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)

24 tháng 5 2016

Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2 
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2 
AC = 12 - AB = 12 - x 
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2 
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2 
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2 
Giải phương trình này tìm được x = 5

9 tháng 6 2019

giúp vs ạ

NV
23 tháng 7 2021

Kẻ đường cao AH ứng với BC

Đặt \(AB=x\) với \(0< x< 12\Rightarrow AC=12-x\) 

Đặt \(BH=y\Rightarrow CH=8-y\) (với \(0< y< 8\))

Trong tam giác vuông ABH ta có:

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=\dfrac{x}{2}\Rightarrow y=\dfrac{x}{2}\)

\(\Rightarrow CH=8-y=8-\dfrac{x}{2}\)

 \(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=\dfrac{x\sqrt{3}}{2}\)

Áp dụng Pitago cho tam giác vuông ACH:

\(AC^2=AH^2+CH^2\Leftrightarrow\left(12-x\right)^2=\left(\dfrac{x\sqrt{3}}{2}\right)^2+\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\Rightarrow x=5\)

\(\Rightarrow AC=12-x=7\)

Vậy \(AB=5cm,AC=7cm\)

NV
23 tháng 7 2021

undefined

10 tháng 8 2016

ko biết làm tại mới lớp 6