K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

CHTT nha bạn !

17 tháng 12 2015

\(\left(ax+by\right)^2=1\Leftrightarrow\left(ax\right)^2+2abxy+\left(by\right)^2=1\Leftrightarrow2xy\le1\Leftrightarrow xy\le\frac{1}{2}\)

29 tháng 4 2017

Ta có: ax+by=2

=>(ax+by)2=4

<=>a2x2+b2y2+2abxy=4(1)

Áp dụng bất đẳng thức côsi cho 2 số dương:

a2x2+b2y2\(\ge\)2|abxy|\(\ge\)2abxy

Dấu "=" xảy ra khi và chỉ khi ax=by

=> (1) tương đương 4\(\ge\)4abxy=4xy(do ab=1)

=>1\(\ge\)xy(đpcm)

Dấu = xảy ra khi ax=by=1

29 tháng 4 2017

Cách lớp 7 thì từ dòng 4 đến dòng 7 chỉnh:

Ta có:(ax-by)2\(\ge\)0 với mọi a,b,x,y

=>a2x2-2abxy+b2y2\(\ge\)0

=>a2x2+b2y2\(\ge\)2abxy

(Tính (ax-by)2 = cách nhân (ax-by)(ax-by) thôi chứ k có gì cao siêu cả)

30 tháng 9 2017

\(ax+by+cz+2\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}\)

\(\le\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}+2\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}\)

\(=\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}+\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}+\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}\)

\(\le\sqrt{\left(a^2+b^2+c^2+2\left(ab+bc+ca\right)\right)\left(x^2+y^2+z^2+2\left(xy+yz+zx\right)\right)}\)

\(=\sqrt{\left(a+b+c\right)^2\left(x+y+z\right)^2}\)

\(=\left(a+b+c\right)\left(x+y+z\right)=a+b+c\)

2 tháng 10 2017

hấp diêm đi boài khác giúp mày em ạ

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)