K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Bạn xem lại đề giùm mình nhé.

30 tháng 11 2017

Đề chỉ có thế thôi

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

4 tháng 12 2017

Xét: a2 \(\ge\)a;   b2 \(\ge\)b;  c\(\ge\)c

\(\Rightarrow\)a2 + b2 + c2 \(\ge\)a + b + c \(\ge\)abc

4 tháng 12 2017

ban duong huynh giang nham roi ban oi. a2\(\ge\)a khi a\(\ge\)1 thoi. Vi du \(\frac{1}{2}^2\ge\frac{1}{2}\Rightarrow\frac{1}{4}\ge\frac{1}{2}\)(vo li)

23 tháng 8 2019

Ta có:

\(a+b+c\ge abc\) (gt)

mà \(a^2+b^2+c^2\ge a+b+c\forall a,b,c\ge0\) 

\(\Rightarrow a^2+b^2+c^2\ge abc\left(đpcm\right)\)

23 tháng 8 2019

nếu sd bổ đề thì ít nhất bạn cx cần nói sơ qua về nó hoặc cm nó ạ

2 tháng 9 2016

cho a,b,c >0