\(a+b+c\ge abc\)

CMR: \(a^2+b^2+c^2\ge abc\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Bạn xem lại đề giùm mình nhé.

30 tháng 11 2017

Đề chỉ có thế thôi

4 tháng 12 2017

Xét: a2 \(\ge\)a;   b2 \(\ge\)b;  c\(\ge\)c

\(\Rightarrow\)a2 + b2 + c2 \(\ge\)a + b + c \(\ge\)abc

4 tháng 12 2017

ban duong huynh giang nham roi ban oi. a2\(\ge\)a khi a\(\ge\)1 thoi. Vi du \(\frac{1}{2}^2\ge\frac{1}{2}\Rightarrow\frac{1}{4}\ge\frac{1}{2}\)(vo li)

NV
23 tháng 7 2020

\(a;b;c\ge1\Rightarrow\left\{{}\begin{matrix}a^3+1\ge a^2+1\\b^3+1\ge b^2+1\\c^3+1\ge c^2+1\end{matrix}\right.\)

\(\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\)

Do đó ta chỉ cần chứng minh: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

Ta có: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^3}}\ge\frac{4}{1+abc}\)

\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

23 tháng 7 2020

Chứng minh: 

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) (1) với  a; b \(\ge\)1

Thật vậy: 

(1) <=> \(\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\ge\frac{2}{1+ab}\)

<=> \(2+a^2+b^2+2ab+a^3b+ab^3\ge2+2a^2+2b^2+2a^2b^2\)

<=> \(a^3b+ab^3+2ab-a^2-b^2-2a^2b^2\ge0\)

<=> \(ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

<=> \(\left(ab-1\right)\left(a-b\right)^2\ge0\)đúng với a; b \(\ge\)1

Vậy (1) đúng 

Áp dụng ta có:

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+abc}\ge\frac{2}{1+ab}+\frac{2}{1+c\sqrt{abc}}\)

\(=2\left(\frac{1}{1+\left(\sqrt{ab}\right)^2}+\frac{1}{1+\left(\sqrt{c\sqrt{abc}}\right)^2}\right)\ge2.\frac{2}{1+\sqrt{ab}.\sqrt{c\sqrt{abc}}}=\frac{4}{1+\sqrt{abc\sqrt{abc}}}\)

\(\ge\frac{4}{1+\sqrt{abc.abc}}=\frac{4}{1+abc}\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)

Dấu "=" xảy ra <=> a = b = c

10 tháng 4 2018


1.b

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung

10 tháng 4 2018

2 . ta có

\(\left(x-y\right)^2\ge0\)

<=> x2-2xy+y2 ≥ 0

<=> x2+4xy-2xy+y2 ≥ 4xy

<=> x2+2xy+y2 ≥ 4xy

<=> (x+y)2 ≥ 4xy

CMTT

(y+z)2 ≥ 4yz

(z+x)2 ≥ 4zx

nhân các vế của bđt ta có

[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2

<=> (x+y)(y+z)(z+x) ≥ 8xyz

2 tháng 11 2017

ai trả lời nhiều tớ sẽ dùng 4 nick k cho nha cảm ơn

7 tháng 4 2017

\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)

\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)

\(-ab+ac\le0\)

\(-ad-cd\le0\)

\(-bc+bd\le0\)

\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)

\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)

Bằng nhau khi và chỉ khi a = b = c = d

Dấu lớn xảy ra khi a> b >c > d

***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài limdim***********

NV
30 tháng 9 2019

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

"=" \(\Leftrightarrow a=b=c\ne0\)