Cho biểu thức sau: \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
Rút gọn P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\); x khác 2; 3
Ta có:
\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)
\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)
=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)
\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)
=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)
ĐK:x>1
M=\(\frac{x-1}{2x}\) .\(\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
=\(\frac{x-1}{2x}\).\(\frac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{x-1}\)=\(\frac{x-1}{2x}\).\(\frac{-4x}{x-1}\)=-2
Vậy M=-2
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
ta có :
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(\frac{x^2+x+1}{x+\sqrt{x}+1}=\frac{\left(x+1\right)^2-x}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}+1}=x-\sqrt{x}+1\)