K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

Ta chứng minh bổ đề sau:

\(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\ge1\)

Ta có:

\(VT=\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2b^2ca+c^2a^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+2abc^2+b^2c^2+2bca^2+c^2a^2+2cab^2}\)

\(=\frac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\left(đung\right)\)

Ta lại có:

\(\frac{9a^2}{5a^2+\left(b+c\right)^2}=\frac{\left(a+a+a\right)^2}{\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)}\)

\(\le\frac{a^2}{a^2+b^2+c^2}+\frac{a^2}{2a^2+bc+\left(2a^2+bc\right)}+\frac{a^2}{2a^2+bc}\)

\(=\frac{a^2}{a^2+b^2+c^2}+\frac{2a^2}{2a^2+bc+\left(2a^2+bc\right)}\)

\(\Rightarrow\frac{a^2}{5a^2+\left(b+c\right)^2}\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{2a^2}{2a^2+bc}\right)\)

Từ đó ta có:

\(VT\le\frac{1}{9}\left(\frac{a^2+b^2+c^2}{a^2+b^2+c^2}+\frac{2a^2}{2a^2+bc}+\frac{2b^2}{2b^2+ca}+\frac{2c^2}{2c^2+ab}\right)\)

\(=\frac{1}{9}\left(1+3-\frac{bc}{2a^2+bc}-\frac{ca}{2b^2+ca}-\frac{ab}{2c^2+ab}\right)\)

\(\le\frac{1}{9}\left(1+3-1\right)=\frac{1}{3}\)

28 tháng 9 2018

Ta co:

\(\frac{a^2}{5a^2+\left(b+c\right)^2}=\frac{a^2}{\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)}\)

\(\le\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+\frac{2a^2}{2a^2+bc}\right)=\frac{1}{9}\left(\frac{a^2}{a^2+b^2+c^2}+1-\frac{bc}{2a^2+bc}\right)\)

Từ đây ta co:

\(VT\le\frac{1}{9}\left(\frac{a^2+b^2+c^2}{a^2+b^2+c^2}+3-\left(\frac{ab}{2c^2+ab}+\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}\right)\right)\)

\(VT\le\frac{4}{9}-\frac{1}{9}\left(\frac{ab}{2c^2+ab}+\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}\right)\le\frac{4}{9}-\frac{1}{9}=\frac{1}{3}\)

30 tháng 8 2020

Chứng minh với 3 số thực dương x,y,z ta có : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(*)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Chứng minh được bất đẳng thức \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)(**)

Đẳng thức xảy ra khi và chỉ khi \(\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\)

Đặt \(P=\frac{a^2}{5a^2+\left(b+c\right)^2}+\frac{b^2}{5b^2+\left(a+c\right)^2}+\frac{c^2}{5c^2+\left(b+a\right)^2}\)

Áp dụng bất đẳng thức (*) ta có : 

\(\left[\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)\right].\left(\frac{1}{a^2+b^2+c^2}+\frac{1}{2a^2+bc}+\frac{1}{2a^2+bc}\right)\ge9\)

\(\frac{9a^2}{5b^2+\left(b+c\right)^2}=\frac{9a^2}{\left(a^2+b^2+c^2\right)+\left(2a^2+bc\right)+\left(2a^2+bc\right)}\le a^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2a^2+bc}\right)\)

Bằng cách chứng minh tương tự ta được :

\(\frac{9b^2}{5b^2+\left(c+a\right)^2}\le b^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2b^2+ac}\right)\)

\(\frac{9c^2}{5c^2+\left(a+b\right)^2}\le c^2\left(\frac{1}{a^2+b^2+c^2}+\frac{2}{2c^2+ab}\right)\)

Cộng theo vế các bất đẳng thức cùng chiều , khi đó ta có :

\(\frac{9a^2}{5a^2+\left(b+c\right)^2}+\frac{9b^2}{5b^2+\left(c+a\right)^2}+\frac{9c^2}{5c^2+\left(a+b\right)^2}\le1+\left(\frac{2a^2}{2a^2+bc}+\frac{2b^2}{2b^2+ca}+\frac{2c^2}{2c^2+ab}\right)\)

Suy ra \(9P\le4-\left(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}\right)\)

Mặt khác \(\frac{bc}{2a^2+bc}+\frac{ca}{2b^2+ca}+\frac{ab}{2c^2+ab}=\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2ab^2c+c^2a^2}+\frac{a^2b^2}{2abc^2+a^2b^2}\)

Sử dụng bất đẳng thức (**) ta được :

\(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{c^2a^2}{2ab^2c+c^2a^2}+\frac{a^2b^2}{2abc^2+a^2b^2}\ge\frac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\)

Vậy \(9P\le4-1=3< =>P\le\frac{1}{3}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

 
7 tháng 5 2020

\(\Leftrightarrow\Sigma\sqrt{\frac{3a^3}{\left[5a^2+\left(b+c\right)^2\right]\left(a+b+c\right)}}\le1\)

Theo Am-GM: \(VT=\Sigma\sqrt{\frac{3a^2}{5a^2+\left(b+c\right)^2}.\frac{a}{a+b+c}}\le\Sigma\frac{3a^2}{2\left(5a^2+\left(b+c\right)^2\right)}+\frac{1}{2}\)

Như vậy nó là đủ để chứng minh rằng: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\)

Giả sử \(c=min\left\{a,b,c\right\}\) nó tương đương:

$$2\, \left( a-b \right) ^{2} \left( 3\,c+a+b \right) \left( -c+a+b
 \right) \left( {a}^{2}+2\,ab+{b}^{2}+5\,{c}^{2} \right) +2\,c
 \left( a-c \right) \left( b-c \right) \left( 3\,{a}^{3}+9\,{a}^{2}b
+17\,c{a}^{2}+9\,a{b}^{2}-20\,abc+3\,{c}^{2}a+3\,{b}^{3}+17\,c{b}^{2}+
3\,{c}^{2}b+{c}^{3} \right) \geqq 0$$

(Gõ Latex, không hiện thì vô thống kê hỏi đáp xem)

Đây là điều hiển nhiên/

PS: Bài này quan trọng là ý tưởng phá căn thôi chứ không có gì khó. Lúc đầu UCT bất đẳng thức cuối cho đẹp nhưng phải xét các TH mệt lắm, chưa rành nên không làm cách đó:D

7 tháng 5 2020

Chứng minh: \(\Sigma\frac{3a^2}{5a^2+\left(b+c\right)^2}\le1\), cách 2:

Đổi biến sang pqr: (Vô thống kê hỏi đáp xem nếu olm không hiện Latex)

Nếu \(p^2\le4q\) ta cần:

$$2/9\,p \left( 19\,{p}^{2}-36\,q \right) \left( {p}^{3}-4\,qp+9\,r
 \right) -4/9\, \left( {p}^{2}-3\,q \right) \left( {p}^{2}-4\,q
 \right) \left( 5\,{p}^{2}-3\,q \right) \geqq 0$$

(Hiển nhiên)

Nếu \(p^2\ge4q\) thì cần chứng minh:

$$2\,p \left( 19\,{p}^{2}-36\,q \right) r+2\, \left( {p}^{2}-4\,q
 \right) \left( {p}^{4}-2\,{q}^{2} \right) \geqq 0$$

(Hiển nhiên)

Từ 2 TH trên ta thu được điều phải chứng minh.

8 tháng 3 2020

a,b,c thực dương

dễ thế mà ko làm dc à ngu vậy má

6 tháng 11 2016

\(P=\left(5a+\frac{2}{b+c}\right)^2+\left(5b+\frac{2}{c+a}\right)^2+\left(5c+\frac{2}{a+b}\right)^2\)

\(=4\text{∑}\frac{1}{\left(a+b\right)^2}+20\text{ }\text{∑}\left(\frac{a}{b+c}\right)+75\)

\(\ge2\text{∑}\frac{1}{a^2+b^2}+20\cdot\frac{3}{2}+75\)

\(\ge2\cdot\frac{9}{2\left(a^2+b^2+c^2\right)}+105=108\)

Dấu = khi a=b=c=1

7 tháng 11 2016

bạn dùng cách gì á mình k hiểu ?

cho đề này:

cho a;b;c là các số thực dương thỏa mãn a2+b2+c2=1.CMR:\(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le\frac{9}{2}\)

26 tháng 6 2020

t chuyên Anh mà:v

26 tháng 6 2020

tth_newrì lí.-. thế lm Toán giỏi phết.Toàn cho mấy bài toán hack não không.Để tìm lại cái não đã bị hack r