ko ai,lm à
cho:x+y+z=0;x^2+y^2+z^2=1 thì ta có:x5+y5+z5=5/4(2x3 - x)
bạn chipu giải sai r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+x=0
=) x+y=-z
(=) (x+y)^3 = (-z)^3
(=) x^3+3x^2y+3xy^2+y = -z^3
(=) x^3+y^3+z^3 = -3x^2y- 3xy^2
= x^3+y^3+z^3= -3xy(x+y)
(=) x^3+y^3+z^3 = -3xy(-z)
=) x^3+y^3+z^3 = 3xyz
Cần chứng minh :
x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)
Có :
x3 + y3 + z3 - 3xyz
= (x + y)3 - 3xy(x + y) + z3 - 3xyz
= (x + y)3 + z3 - 3xy.(x + y + z)
= (x + y + z).[(x + y)2 - (x + y).z + z2) - 3xy(x + y + z)
= (x + y + z).[x2 + 2xy + y2 - zx - yz + z2) - 3xy(x + y + z)
= (x + y + z).(x2 + y2 + z2 + 2xy - 3xy - yz - zx)
= (x + y + z).(x2 + y2 + z2 xy - yz - zx) (Điều cần chứng minh)
=> (x + y + z).(x2 + y2 + z2 xy - yz - zx) = 0 (vì x + y + z = 0)
=> x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)