K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2017

x+y+x=0

=) x+y=-z

(=) (x+y)^3 = (-z)^3

(=) x^3+3x^2y+3xy^2+y = -z^3

(=) x^3+y^3+z^3 = -3x^2y- 3xy^2

= x^3+y^3+z^3= -3xy(x+y)

(=) x^3+y^3+z^3 = -3xy(-z)

=) x^3+y^3+z^3 = 3xyz 

29 tháng 7 2017

Cần chứng minh :

x3 + y3 + z3 - 3xyz = (x + y + z)(x2 + y2 + z2 - xy - yz - zx)

Có :

x3 + y3 + z3 - 3xyz

= (x + y)3 - 3xy(x + y) + z3 - 3xyz

= (x + y)3 + z3 - 3xy.(x + y + z)

= (x + y + z).[(x + y)2 - (x + y).z + z2) - 3xy(x + y + z)

= (x + y + z).[x2 + 2xy + y2 - zx - yz + z2) - 3xy(x + y + z)

= (x + y + z).(x2 + y2 + z2 + 2xy - 3xy - yz - zx)

= (x + y + z).(x2 + y2 + z2  xy - yz - zx)   (Điều cần chứng minh)

=> (x + y + z).(x2 + y2 + z2  xy - yz - zx)  = 0   (vì x + y + z = 0)

=> x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz 

10 tháng 9 2023

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

10 tháng 9 2023

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)

=2 nha bạn

lúc ấy olm chưa cs ai on đâu

4 tháng 4 2019

 Trả lời

1 + 1 = 2

Khoa

14 tháng 8 2018

Thế nam lớp 10 đc k,mak pk là nữ!!!

14 tháng 8 2018

xạo riếc wen thói :))