K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: DB+AD=AB

EC+AE=AC

mà AD=AE

và AB=AC

nên DB=EC

Xét ΔDBM và ΔECM có

DB=EC

\(\widehat{B}=\widehat{C}\)

MB=MC

Do đó: ΔDBM=ΔECM

Suy ra: MD=ME

Ta có: AD=AE

nên A nằm trên đường trung trực của DE(1)

ta có: MD=ME

nên M nằm trên đường trung trực của DE(2)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(3)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(4)

Từ (1) và (2) suy ra AM là đường trung trực của DE

hay AM\(\perp\)DE

Từ (3) và (4) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

Suy ra: \(\widehat{ABM}=\widehat{ACM}\)

b: Ta có: ΔABC cân tại A

nên \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-40^0}{2}=70^0\)

c: Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Do đó: DE//BC

31 tháng 8 2021

cảm ơn rất nhiều ạ tìm sáng giờ mới có câu trả lời rất cảm ơn ạ đúng sai cũng ko sao nữa

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

a: Xét ΔADE có AD=AE

nên ΔADE cân tại A

Xét ΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

b: Xét ΔAMB và ΔAMC có 

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

17 tháng 1 2022

Cảm ơn bạn nhiều.

24 tháng 11 2021

b) Vì AB=AC

⇒  ∆ABC cân tại A

⇒ AM là đường trung tuyến đồng thời là đường cao, phân giác

⇒ AM⊥BC

a) Xét ∆ABM và ∆ACM có:

AM: cạnh chung

^M1=^M2=90o(Vì AM⊥BC)

MB=MC(gt)

⇒ ∆ABM=∆ACM (c.g.c)

c) Xét ∆AMB và ∆DMC có:

MA=MD(gt)

^M1=^M3(đối đỉnh)

MB=MC(gt)

⇒ ∆AMB=∆DMC (c.g.c)

⇒ ^A1=^D1(t/ứ)

mà 2 góc có vị  trí so le trong 

⇒ CD//AB

Sửa đề: Cho tam giác ABC cân tại A

a: XétΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

mà tia AM nằm giữa hai tia AB,AC

nên AM là phân giác của góc BAC

Ta có:ΔABM=ΔACM

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

=>AM\(\perp\)BC tại M

c:

Ta có: AM\(\perp\)BC tại M(cmt)

mà D\(\in\)AM

nên DM\(\perp\)BC

Xét ΔDBC có

DM là đường cao

DM là đường trung tuyến(M là trung điểm của BC)

Do đó: ΔDBC cân tại D

=>DB=DC

d: AH+HB=AB

AK+KC=AC

mà HB=KC

và AB=AC

nên AH=AK

Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)

nên HK//BC

a: Xét ΔABM và ΔACM có 

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét tứ giác AMCE có 

N là trung điểm của AC

N là trung điểm của ME

Do đó: AMCE là hình bình hành

Suy ra: AE=CM

30 tháng 11 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.