Cho tam giác abc có góc a bằng 90° gọi m là trung điểm của ac trên tia đối mb lấy n sao cho mb bằng mn chứng minh rằng :
A) cn vuông góc ac và cn bằng ab
B) an bằng bc và an song song bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>DC\(\perp\)AC
mà AC\(\perp\)AB
nên AB//DC
c: ΔMAB=ΔMCD
=>AB=CD
Xét ΔKAB và ΔKEC có
KA=KE
\(\widehat{AKB}=\widehat{EKC}\)
KB=KC
Do đó: ΔKAB=ΔKEC
=>AB=EC
ΔKAB=ΔKEC
=>\(\widehat{KAB}=\widehat{KEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
AB//EC
AB//CD
CD,EC có điểm chung là C
Do đó: E,C,D thẳng hàng
AB=EC
AB=CD
Do đó: EC=CD
Ta có: E,C,D thẳng hàng
EC=CD
Do đó: C là trung điểm của ED
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
a)Xét tam giác BAM và tam giác KCM có :
M1 = M3 ( Đối đỉnh )
AM = MC ( gt )
BM = MK ( gt )
=> Tam giác BAM = tam giác KCM
=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )
b) Xét tam giác AMK và tam giác CMB có :
KM = MB ( gt )
AM = MC ( gt )
M2 = M4 ( Đối đỉnh )
=> Tam giác AMK = tam giác CMB
=> Góc MKA = góc MBC ( cặp góc tương ứng )
=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )
Hình tự vẽ.
a) Xét △MAB và △MCN có:
MB=MN(gt)
BMA=NMC(đối đỉnh)
MA=MC(M: trđ AC)
\(\Rightarrow\)△MAB=△MCN(c.g.c)
\(\Rightarrow\)AB=CN(2 cạnh tương ứng)
b)Xét △CMB và △AMN có:
MB=MN(gt)
CMB=AMN(đối đỉnh)
MA=MC(M: trđ AC)
\(\Rightarrow\)△CMB=△AMN(c.g.c)
\(\Rightarrow\)BC=AN(2 cạnh tương ứng)
c) Vì △CMB=△AMN
\(\Rightarrow\)BCM=MAN(2 góc tương ứng)
Mà hai góc BCM và MAN vị trí so le trong
\(\Rightarrow\)BC//AN
d) Vì △MAB=△MCN
\(\Rightarrow\)MAB=MCN(2 góc tương ứng)
\(\Rightarrow\)MAB=MCN=90°
\(\Rightarrow\)AC\(\perp\)CN
a/ xét 2 tam giác AMB và CMK có:
AM = MC (M là t/đ AC)
góc KMC = góc BMA (đối đỉnh)
MK = MB (gt)
=> tam giác AMB = tam giác CMK (c.g.c)
=> góc MAB = góc MCK = 90 độ hay KC vuông AC (đpcm)
b. xét hai tam giác AMK và CMB có:
AM = MC (M là t/đ AC)
góc AMK = góc CMB (đối đỉnh)
MK = MB (gt)
=> tg AMK = tg CMB (c.g.c)
=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)
a: Xét tứ giác ABCN có
M là trung điểm của AC
M là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: CN//AB và CN=AB
=>CN\(\perp\)AC
b: Ta có: ABCN là hình bình hành
nên AN//BC và AN=BC