Chứng minh không có giá trị của x, y trong biểu thức sau:
x2 + 5y2 + 2x - 4xy - 10y + 14 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Lời giải:
$A=(x^2+4y^2+4xy)+y^2+6x+16y+32$
$=(x+2y)^2+6(x+2y)+(y^2+4y)+32$
$=(x+2y)^2+6(x+2y)+9+(y^2+4y+4)+19$
$=(x+2y+3)^2+(y+2)^2+19\geq 0+0+19=19$
Vậy $A_{\min}=19$. Giá trị này đạt tại $x+2y+3=y+2=0$
$\Leftrightarrow y=-2; x=1$
Giúp em với
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)
\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)
\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)
\(A=2x^2+2023\)
Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y
\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)
\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)
\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)
\(B=-3x+3y\)
Vậy giá trị của biểu thức vẫn phụ thuộc vào biến
A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)
A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)
A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))
A = 2\(x^2\) - 0 + 2023 - 0
A = 2\(x^2\) + 2023
Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.
Ta có:\(A=x^2+5y^2+2x-4xy-10y+14\)
\(=(x^2+4y^2+1-4xy-4y+2x)+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\)
Do \(\left(x-2y+1\right)^2\ge0\left(\forall x;y\right)\)
\(\left(y-3\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\left(\forall x;y\right)\)(1)
Mà đề bài lại cho \(A=0\) (2)
(1); (2) Suy ra không có giá trị của x;y thỏa mãn đề bài